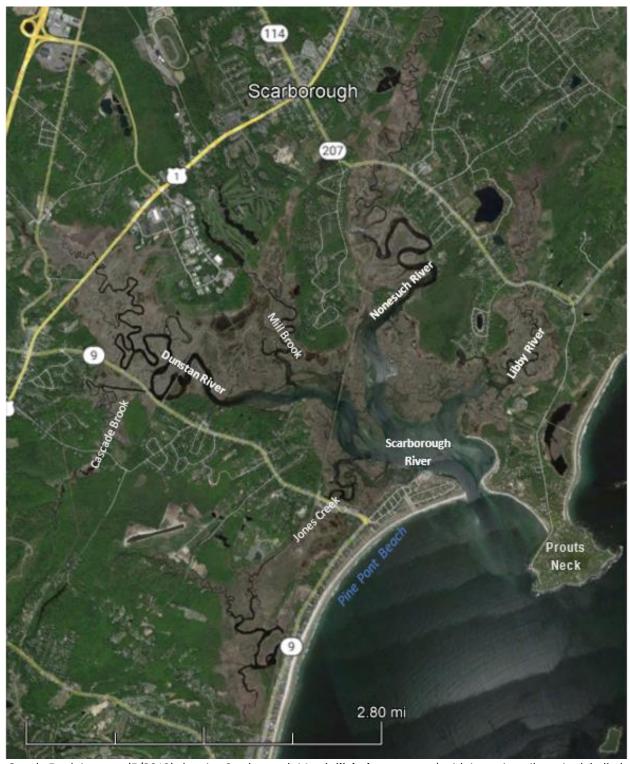
Scarborough Marsh Phragmites Salinity Study Scarborough, Maine USA

Friends of Scarborough Marsh

Prepared For


Friends of the Scarborough Marsh (FOSM)
PO Box 7049
Scarborough, ME 04070

https://www.scarboroughmarsh.org/

Prepared By

Steven R. Pinette, Consulting Hydrogeologist (ret.) and FOSM Chair Anthony J. DeVecchis, BS, University of Southern Maine

December 2022

Google Earth imagery (5/2012) showing Scarborough Marsh (**light brown areas**) with its major tributaries labelled.

TABLE OF CONTENTS

LI	ST OF T	ABLES	ii
LI	ST OF F	GURES	iii
E	KECUTI\	'E SUMMARY	I
1		INTRODUCTION	1
	1.1	Study Background and Purpose	1
	1.2	Historical Occurrence of Phragmites in the Scarborough Marsh	2
	1.3	Study Goals	5
2		METHODS	1
	2.1	Groundwater Salinity Evaluation	1
	2.1.1	Site Selection	1
	2.1.2	Monitoring Wells	2
	2.1.2	Soil Borings to Understand Marsh Stratigraphy	2
	2.2	Evaluation of Electrical Conductivity in Shallow Soil Porewater	3
	2.2.1	Phragmites Site Selections, Site Nomenclature and Site Descriptions	3
	2.2.2	Marsh-Fringe Reference Sites	8
	2.2.3	Field Measurements	8
3		STUDY RESULTS AND DISCUSSION	1
	3.1	Marsh Stratigraphy and Groundwater	1
	3.1.1	Marsh Stratigraphy at Groundwater Monitoring Sites	1
	3.1.2	Groundwater Levels	2
	3.1.3	Salinity of Groundwater	3
	3.2	Specific Conductance of Porewater in Shallow Soils	5
	3.2.1	Descriptive and Comparative Statistics for the All Phragmites Study Sites, Each Sub-Watershed and Each Dominant Plant Species	
	3.2.2	Descriptive and Comparative Statistics for Phragmites Study Sites by Plant Species .	11
	3.2.3	Phragmites Study Site Statistical Comparisons	15
	3.2.4	Relationship of Porewater Specific Conductance and Distance from Marsh Fringe in the Phragmites Study Sites	
	3.2.5	Marsh-Fringe Reference Sites	20
4		SUMMARY	24
	4.1	Groundwater	24

4.2	Soil Porewater Salinity at the Phragmites Study Sites	24
4.2.1	Sub-watershed Comparisons	24
4.2.2	Comparisons by Dominant Plant Species	25
4.2.3	Study Site Comparisons (undifferentiated by plant species)	25
	Study Site Comparisons (differentiated by plants species)	
4.2.5	Porewater Specific Conductance versus Distance-from-Marsh-Fringe	26
4.2.6	Broad conclusions of the Phragmites porewater study	27
4.3	Comparison to Unspoiled High-Marsh Regions of the Scarborough Marsh	27
5	RECOMMENDATIONS	
5.1	Preliminary Recommendations for Municipal Stormwater Management	29
5.2	Recommendations for Additional Work	29
ACKNOW	LEGEMENTS	31
REFEREN	CES	32
APPENDIX	K A - Scarborough Marsh Restoration Projects (2003 to 2013)	35
APPENDIX	KB - Soil Boring Logs and Monitoring Well Diagrams	38
	C - Porewater site location maps and Marsh-Fringe Data plots	
Append	dix C-1. Location Maps for Porewater Study Sites	42
	dix C-2. Plots of Distance-from-Marsh-Fringe versus Porewater Specific Conductance	
		51
APPENDIX	KD - Specific Conductance Data for Porewater Survey Points	57
APPENDIX	KE-Statistical Data	65
Append	lix E-1. Summary Statistics for the Phragmites Porewater Study Sites	66
Append	dix E-2. Summary Statistics for Marsh-Fringe Reference Sites	85
LIST OF	TARIFS	
Table 2.2.	2-1 Salinity and specific conductance of fresh water amended with aliquots of brackish water	
Table 3.1	2-1 Groundwater levels in monitoring wells	
Table 3.1.	3-1 Groundwater salinities in monitoring wells	
Table 3.2.	, , , , , , , , , , , , , , , , , , , ,	
T-1-1 2.2	species and sub-watersheds	
Table 3.2.	1-2 Summary of pairwise sub-watershed comparisons for specific conductance the entire Phragmites study	: In

Table 3.2.1-3	Summary of pairwise plant species comparisons for specific conductance in the entire Phragmites study
Table 3.2.2-1	Summary of descriptive statistics for each study site according to dominant plant species
Table 3.2.3-1	Summary of significantly different pairwise site comparisons
Table 3.2.3-2	Significantly different site pairs within each dominant plant species
Table 3.2.4-1	Source transects and their off-gradient counterparts
Table 3.2.5-1	Porewater specific conductance for <i>Spartina patens</i> at the marsh-fringe reference sites
Table 3.2.5-2	Summary of specific conductance/salinity statistics for the marsh-fringe reference sites and dominant plant species encountered at the stormwater-impacted Phragmites study sites.
Table 3.2.5-3	Summary of pairwise plant species comparisons for the Phragmites study sites v. the marsh-fringe references sites

LIST OF FIGURES

Figure 1.2-1	Distribution of the low-marsh and high-marsh zones in the Scarborough Marsh
Figure 1.2-2	Map of Normandeau's (2019) Phragmites study area, locations of the major Phragmites stands and Scarborough Marsh sub-watersheds
Figure 2.1.1-1	Map showing the three groundwater monitoring sites
Figure 2.2.1-1	Map showing porewater salinity monitoring sites
Figure 2.2.1-2	Map showing drainage ravine east of porewater study site DR-A
Figure 2.2.1-3	Map showing study sites in the Dunstan River sub-watershed
Figure 2.2.1-4	Map showing study sites in the Libby River sub-watershed
Figure 2.2.1-5	Map showing study sites in the Nonesuch River sub-watershed
Figures 2.2.2-1A	Map showing the Dunstan River marsh-fringe reference survey sites
Figures 2.2.2-1B	Map showing the Libby River marsh-fringe reference survey sites
Figures 2.2.2-1C	Map showing the Nonesuch River marsh-fringe reference survey sites
Figure 2.2.3-1	Linear regression plot of salinity versus specific conductancefor fresh water
	amended with aliquots of brackish water
Figure 2.2.2-2	Photos of the four dominant plant species encountered in the study areas
Figure 3.1.3-1	Bar chart of groundwater salinities for August 28, 2020
Figure 3.2.1-1	Boxplots of porewater specific conductance for the entire study, three sub-
	watersheds and dominant plant species
Figure 3.2.1-2	Histogram of porewater specific conductance for the entire study
Figure 3.2.1-3	Histogram of porewater specific conductance for the three sub-watersheds
Figure 3.2.1-4	Histogram of porewater specific conductance for the dominant plant species

Figure 3.2.2-1A	Boxplots of specific conductance in the Dunstan River sub-watershed by dominant plants species
Figure 3.2.2-1B	Boxplots of specific conductance in the Libby River sub-watershed by dominant plants species
Figure 3.2.2-1C	Boxplots of specific conductance in the Nonesuch River sub-watershed by dominant plants species
Figure 3.2.3-1A	Boxplots of specific conductance for cattail at the Phragmites study sites
Figure 3.2.3-1B	Boxplots of specific conductance for Phragmites at the Phragmites study sites
Figure 3.2.3-1C	Boxplots of specific conductance for Spartina (undifferentiated) at the Phragmites study sites
Figure 3.2.5-1	Boxplots of specific conductance for <i>Spartina patens</i> at the marsh-fringe reference sites and for each dominant plant species at the Phragmites study sites

Scarborough Marsh Phragmites Salinity Study Scarborough, Maine USA

EXECUTIVE SUMMARY

Study Background and Purpose

In 2018 Friends of Scarborough Marsh (FOSM) funded a study by Normandeau Associates, Inc. (Normandeau, 2019) to identify significant occurrences of the invasive plant *Phragmites* ssp. *australis* (Phragmites) on the Scarborough Marsh. This subspecies of Phragmites is an aggressive invasive plant that was introduced to North America from Europe, and it has outcompleted 11 native North American Phragmites lineages and spread aggressively throughout eastern and southeastern coastal North America, beginning around mid-20thcentury (Saltonstall, 2002). Invasive Phragmites has been reported in many different classes of tidal marsh in North America and elsewhere, but low-salinity tidal wetlands (salinities less than 5 parts per thousand¹ [ppt]) and created or restored tidal wetlands appear to be those most susceptible to its colonization (Chambers *et al.*, 2003).

The Normandeau survey identified 111 Phragmites stands covering an area of approximately 134 acres (approximately 4.4% of the Scarborough Marsh) and 54 diffuse/small stands. Normandeau posited that tidal restrictions and influx of stormwater from adjacent commercial and residential developments (i.e., conditions that cause decrease in soil/peat porewater salinity) were likely the principal factors contributing to growth of these dense Phragmites stands.

As part of an effort to better understand the cause(s) of the Phragmites invasion problem in the Scarborough Marsh, one of the current study's authors (Pinette) conducted a site reconnaissance (July 2019) in one of the more prominent Phragmites stands (site DR-A in this study) which is located directly north of Route 1 and east of the Dunstan River. A key observation noted during this site visit was the presence of a deep freshwater pool (depths to approximately 4 ft) along the eastern margin of the marsh adjacent to the mouth of a northeasterly-trending natural drainage ravine. This observation provided the impetus for conducting the current study.

¹ For reference, the salinity of flood tide water (i.e., the source water flooding the marsh plain) measured in two Scarborough Marsh tributary rivers were: Libby River directly downstream of Black Point Road – two highest salinities measured in May 2019 were 21 ppt on 5/8/2019 and 24 ppt on 5/15/2019 (Underwood, 2019, unpublished data); Nonesuch River at Seavey Landing – salinity of 26 ppt (6/2/2022; this study)

FOSM approved funding in 2020 for field research to characterize the salinity of shallow groundwater and shallow soil porewater in several areas of the Scarborough Marsh where extensive Phragmites stands dominate the marsh vegetation and where stormwater conveyance structures (e.g., roadway ditches, culverts and outfall pipes/channels) discharge stormwater to the marsh fringe and the high-marsh plain.

The broad objectives of this study were to:

- Characterize the salinity of shallow groundwater below three dense Phragmites stands in the Dunstan River, Nonesuch River and Libby River sub-watersheds that are downgradient from concentrated stormwater discharges.
- Using specific conductance² of porewater in the shallow soil as a proxy for salinity, evaluate
 the distribution of porewater salinity in the shallow soils in and around seven large
 Phragmites stands that are downgradient from concentrated stormwater sources in the
 Dunstan River, Nonesuch River and Libby River sub-watersheds (total of 11 study sites).
 Three of the sites (DR-A, DR-B and MR-A) are in the Dunstan River sub-watershed, five sites
 (LR-A through LR-E) are in one large Phragmites stand in the Libby River sub-watershed, and
 three sites (NR-A, NR-B and NR-C) are in the Nonesuch River sub-watershed. Three of these
 sites (DR-A, NR-B and LR-B) were also part of the groundwater study.

Ground Water

Ground water level measurements collected from eight monitoring wells in August, September and October 2020 (three rounds of monitoring) showed shallow groundwater within 0.5 ft of the marsh surface. The salinity of shallow groundwater collected in the monitoring wells on these three dates ranged between 0 and 13 ppt. The Dunstan River site (porewater site DR-A) had the lowest groundwater salinities of 2 to 3 ppt on these three dates. Shallow groundwater salinity at the Libby River site (porewater site LR-B) ranged from 0 ppt to 3 ppt. The Nonesuch River site (porewater site NR-B) had the highest salinities of 11 to 13 ppt. We did not observe differences in Phragmites plant appearance, plant height or plant density (number of stems per area) among the three sites.

Porewater

Between November 2020 and June 2021 we measured porewater specific conductance and recorded the dominant marsh plant species for 291 survey points at 11 study sites, in 7 Phragmites stands. Phragmites was the dominant plant species adjacent to the marsh fringe at

² Specific conductance is the ability of a substance to conduct electricity, and specific conductance of water increases as salinity increases. We use salinity (based on specific conductance v. salinity calibration discussed in Section 2.2.2) for discussions addressing descriptive statistics (i.e., range, mean and median) and specific conductance for discussions related to comparative statistics (i.e., comparing study sites and plant species for significant differences).

all the study sites. Subordinate clusters of narrow-leaf cattail, *Typha angustifolia* (cattail), occurred in depressions within the Phragmites stands. We designated the conspicuous boundary between the areas dominated by Phragmites and those dominated by either shortform *Spartina ssp. alterniflora* [*Spartina alterniflora*] or *Spartina ssp. patens* [*Spartina patens*; present only at site DR-B) as the Phragmites 'front' after which Phragmites clusters may have been present but it was not the dominant species. **Figure ES-1** below presents photographs of the four dominant plants encountered in the study.

Conversion of the specific conductance data collected at 291 survey points yielded equivalent porewater salinities for the entire study ranging from 0 ppt to 13 ppt with a mean and median of 6 ppt.

Figure ES-1 Photos of the four dominant plant species encountered in the study areas

Phragmites (Phragmites australis)

Narrow-leaf cattail (Typha angustifolia)

Spartina patens showing the typical 'cowlick' pattern.

Spartina alterniflora on riverbank

Sub-watershed Comparisons – Statistical testing using Dunn's Test found that specific conductance data for the Nonesuch River sub-watershed are significantly different (lower; probability $[p] \le 0.05$) compared to the data for both the Dunstan River and Libby River sub-watersheds, whereas data from the Dunstan River and Libby Rivers sub-watersheds are not significantly different.

Comparisons by Dominant Plant Species (Entire Study) – Statistical testing shows that Phragmites specific conductance data are significantly different (lower; $p \le 0.05$) compared to the data for both cattail and Spartina (undifferentiated by sub-species). Porewater data for cattail and Spartina are not significantly different.

Study Site Comparisons (undifferentiated by plant species) - Statistical testing of the specific conductance data among the 11 porewater study sites (ignoring dominant plant species) shows significant differences for 24 site-site pairs. All study sites are significantly different from at least two other sites. On the low end, site DR-A (in Dunstan River sub-watershed) is significantly different from only two sites, whereas on the upper end site NR-A (in Nonesuch River sub-watershed) is significantly different from six sites.

Study Site Comparisons (differentiated by plants species) — Within the same plant species, statistical pairwise site comparisons (10 sites with cattail data, 11 sites with Phragmites data and 10 sites with Spartina data) show significant differences for 10 cattail site pairs, 18 Phragmites site pairs and 17 Spartina site pairs. The median specific conductance values for most of these site pairs generally differ by a factor of two or more. Other interesting observations include:

- The median specific conductance for short-form *Spartina alterniflora* (a low-marsh plant) at site DR-A (in Dunstan River sub-watershed) is almost twice that of *Spartina patens*³ (a high-marsh plant) at site DR-B, suggesting that either stormwater dilution of tidal flux is significantly greater for DR-B or that the areas dominated by *Spartina alterniflora* at site DR-A are at lower elevations (i.e., subjected to more frequent tidal flooding) than those dominated by *Spartina patens* in site DR-B.
- Median specific conductances for all three plant species at site NR-A (in Nonesuch River sub-watershed) are uniformly lower than those at site NR-B, although both sites border the same small tributary creek to the Nonesuch River. This suggests that dilution of tidal flux with stormwater is greater for site NR-A, that NR-A lies at higher elevations than site NR-B, or both. Greater influx of stormwater in site NR-A is plausible, considering that a freshwater wetland directly west of NR-A and a half-mile section of Black Point Road both drain into NR-A, whereas NR-B receives runoff from a relatively short section of road ditch and the adjacent residential property.

Specific Conductance versus Distance-from-Marsh-Fringe – The salinity profile of soil porewater in the high-marsh region of a healthy salt marsh typically shows a positive salinity

³ DR-A had short-form *Spartina alterniflora* beyond the Phragmites front facing the Dunstan River, whereas DR-B had *Spartina patens* in the same relative position.

gradient with salinity increasing in the high-marsh with distance from the marsh fringe in the direction of the high-marsh/low-marsh boundary (explained in Silvestri, 2005). Part of our analyses focused on examining survey transects oriented perpendicular to the marsh fringe in the Phragmites stands to determine if a high-marsh salinity gradient as described exists or whether influx of stormwater and growth of Phragmites disrupts this phenomenon.

We categorized the transects used for this evaluation as either 'source' transects which are directly downgradient for the stormwater source, or 'off-gradient' transects which are distant (but within the same Phragmites stand) from the stormwater source. Both transect types run perpendicular to the marsh fringe. Source transect DR-A, its off-gradient transect T-1/DR-A and source transect MR-A in the Dunstan River sub-watershed are the only transects that show strong, statistically significant positive linear relationships between distance-from-marsh-fringe and porewater specific conductance (i.e., support a high-marsh salinity gradient.

These results suggest that, depending on site macro- and micro-topography, stormwater discharge can affect the porewater salinities on the high-marsh over lateral distances on the order of 200 meters away from the runoff source⁴ and cause irregular pooling of runoff on the marsh plain that may mask the characteristic high-marsh salinity gradient. This pooling notion appears consistent with relatively large dimensions of the Phragmites stands studied relative to the associated stormwater point-sources at the study sites.

Marsh-Fringe Reference Sites - In June 2022, we conducted a reconnaissance survey in four locations (total of 10 survey points) in the Dunstan River, Libby River and Nonesuch River subwatersheds to characterize the porewater specific conductance in areas of the high-marsh adjacent to the marsh fringe that are covered with Spartina patens and where evidence of anthropogenic alteration and stormwater inputs (i.e., from roads, streets and commercial/residential developments) is absent. With one exception⁵, the marsh fringe in these areas consisted of a mixture of shrubs, salt-marsh grasses, rushes and/or sedges with adjoining mature forest on the upland side of the fringe. These porewater survey points are within 1 to 9 meters of the marsh fringe.

The mean and median porewater specific conductances are higher at the marsh-fringe reference sites compared to Phragmites study sites for cattails, Phragmites, Spartina (undifferentiated), *Spartina patens* and *Spartina alterniflora*. Statistical testing shows that specific conductance data collected at the marsh-fringe reference sites are significantly

⁴ Local macro- and micro-topography likely also affect the extent and configuration of these runoff-impacted areas.

⁵ One survey point in the Nonesuch River sub-watershed is adjacent to a low soil scarp adjoining a residential property bordered with shrubbery.

different (higher) compared to each of the dominant plant species found at the 11 Phragmites study sites.

Broad conclusions of the Porewater Study

- 1. The three dominant plants species (cattail, Phragmites, Spartina) show broad overlap in porewater salinities. This suggests that while Phragmites initially exploits low-salinity regions of the marsh fringe that have been impacted by tidal restrictions and/or influx of stormwater from anthropogenic sources, it can spread and flourish into high-salinity regimes normally dominated by native salt-marsh plants such as short-form *Spartina alterniflora* and *Spartina patens*.
- 2. Based on six source transects at six Phragmites study sites, specific conductance data for only two source transects (DR-A and MR-A) within Phragmites stands showed statistically significant linear relationships that support a characteristic high-marsh positive salinity gradient (i.e., salinity increasing from the marsh fringe toward the high-marsh/low-marsh boundary).
- 3. Based on the available survey data, we found no broad distribution pattern (e.g., isosurfaces⁶) for specific conductance values within the dense Phragmites stands at the 11 study sites. However, this may be an artifact of the reconnaissance nature of this study. A denser sampling pattern/grid of the high-marsh plain would be necessary to assess the distribution of specific conductance/salinity within Phragmites stands in a more meaningful way.

Recommendations for Further Work

1. Preliminary examination of the locations of stormwater discharge structures in the Town of Scarborough using the Town's geographic information system (https://webapps2.cgis-solutions.com/scarboroughAdvanced/; drainage utilities layer) shows that many of the large Phragmites stands mapped by Normandeau (2019) are adjacent to or downgradient from stormwater drainage structures (e.g., culverts, road ditches, outfall pipes). A more comprehensive analysis of the Town's stormwater discharges in relation to the locations of mapped Phragmites stands will be necessary to assess the potential impact of these stormwater structures on the Scarborough Marsh's Phragmites problem. This assessment should include an engineering study to estimate the annual volume of stormwater that currently discharges to the marsh and projections for future discharges in anticipation of climate-change induced increases in Maine's annual precipitation.

⁶ An *isosurface* is a surface in 2- or 3-dimensional space that represents points of constant value or a range of values (e.g., specific conductance, elevation, pressure, temperature, velocity, density) within a volume of space. The area between two adjacent topographic contour lines on a map is an example of an isosurface.

- 2. A dense survey grid in one or more of the Phragmites stands studied for this project would be useful to study the distribution of porewater specific conductance/salinity further. More comprehensive porewater analyses (e.g., major cations and anions, dissolved oxygen and sulfur, nutrients and biochemical analytes related to plant/root respiration) and measurement of soil hydraulic conductivity at some of these sites will help advance theories regarding Phragmites propagation and its survival in high-salinity regimes.
- 3. The Phragmites stands evaluated in this study represent only a fraction of the Phragmites problem identified by Normandeau (2019). Moreover, data documenting the extent of stormwater impacts (i.e., reduction in porewater/root zone salinity) elsewhere in the marsh are lacking, as are data documenting the health of marsh plants near the marsh fringe, and in the high-marsh and low-marsh regions of the Scarborough Marsh. We cannot fully assess the health of the marsh without these data and other data such as hydrologic monitoring and modeling. As an interim measure that focuses on plant ecology, we recommend using remote sensing techniques that rely on crop reflectance and other properties to: (1) map the key plant communities and their habitats throughout the marsh; (2) once mapped, identify areas in which these plants are stressed using both ground-based and remotesensing techniques to understand the nature of the stress(es); and (3) develop a remotesensing technique (with ground-truthing) to map the porewater salinity of the rooting zone throughout the marsh.

Recommendations for Municipal Stormwater Management

While Phragmites eradication efforts using conventional methods such as cutting and herbicide application have proven relatively ineffective on the Scarborough Marsh and elsewhere in North America, relocating existing and future stormwater discharges away from the high-marsh plain directly into marsh creeks and rivers (e.g., using pipes or small ditches/runnels cut into the marsh surface) and enhancing tidal flooding into the affected areas may help limit the spread of Phragmites stands beyond their current geographic footprints. This strategy would likely require modifications to the Town of Scarborough's existing municipal stormwater discharge plan as well as a permit(s) from the Maine Department of Environmental Protection (DEP) to discharge stormwater directly into the marsh rivers and creeks (i.e., into *Waters of the State*). FOSM proposes to begin discussions with the Town and DEP to explore the feasibility of developing such a strategy.

1 INTRODUCTION

1.1 Study Background and Purpose

Friends of Scarborough Marsh (FOSM) conducted research in 2020 and 2021 to characterize the salinity of shallow groundwater and shallow soil porewater in several areas of the Scarborough Marsh where dense monotypic stands of non-native *Phragmites* ssp. *australis* (Phragmites) reed beds occur downgradient from concentrated discharges of stormwater flow onto the high-marsh plain.

Our initial hypotheses were:

- 1) Phragmites stands in areas impacted by concentrated stormwater discharge are characterized by lower salinity porewater in the shallow soils and shallow groundwater compared to the adjacent areas where the native salt-marsh plant species such as *Spartina ssp. patens*⁷ (*Spartina patens*) and *Spartina ssp. alterniflora*⁸ (*Spartina alterniflora*) dominate the high-marsh and low-marsh regions, respectively.
- 2) Phragmites does not tolerate elevated porewater salinities favorable to *Spartina* alterniflora, i.e., there is no overlap between the salinity ranges of the two plants.

Saltonstall (2002) identified Phragmites *haplotype M*⁹ with a likely Eurasian affiliation as the aggressive invasive plant that has out-competed 11 native North American Phragmites lineages and spread aggressively throughout eastern and southeastern coastal North America, beginning around mid-20thcentury. In a laboratory study of three Phragmites lineages, Vasquez *et al.* (2005) note that invasive haplotype M is viable at higher salinities than two native haplotypes, which may help explain how it can propagate into higher salinity regimes associated with the high-marsh regions of tidal marshes.

Non-native Phragmites has been reported in many different classes of tidal marsh in North America and elsewhere. Low-salinity tidal wetlands (salinities less than 5 parts per thousand [ppt]) and created or restored tidal wetlands appear to be those most susceptible to its colonization (Chambers *et al.*, 2003). Human alteration of salt marshes, such as tidal restrictions that reduce saltwater flooding of a marsh and concentrated drainage of freshwater from storm runoff and spring meltwater, reduce the salinity of marsh soils and can create favorable conditions for Phragmites growth (e.g., Burdick *et al.*, 2001; Geedicke *et al.*, 2018). Burdick *et al.* (1999) found that invasive Phragmites can exploit seasonal variations in salinity to establish

⁷ Spartina patens common name: saltmeadow cordgrass

⁸ Spartina alterniflora common name: smooth cordgrass

⁹ A <u>haplotype</u> is a physical grouping of genomic variants (or polymorphisms) that tend to be inherited together. A specific haplotype typically reflects a unique combination of variants that reside near each other on a chromosome (https://www.genome.gov/genetics-glossary/haplotype).

itself early in the growing season during periods when higher precipitation and meltwater naturally decrease marsh salinities. Addition of nutrients has also been shown to substantially increase above-ground Phragmites biomass and its expansion potential in controlled (experimental) disturbances on a Rhode Island salt marsh (Minchinton *et al.*, 2003).

Although Phragmites was not present in their study of four salt marshes in Venice, Italy, Silvestri *et al.* (2005) concluded that, although important, soil salinity alone does not explain the distribution and zonation of salt marsh plant species. They suggest that subsurface factors such as soil permeability and groundwater flow also exert control on halophyte (salt-tolerant plants) zonation, perhaps due to their influence on oxygen availability for aerobic respiration.

Recent research (Bernal *et al.*, 2017) also suggests that Phragmites has the potential to change soil organic matter dynamics and lead to loss of the salt-marsh soil carbon pool that is sequestered at depth under the native salt-marsh vegetation. This salt-marsh carbon pool is part of what climate-change scientists term *blue carbon*, or the carbon stored in the coastal and marine ecosystems of the world. Chmura *et al.* (2003) report that tidal wetlands represent about 1-2% of the estimated carbon sink in the conterminous United States, which is significant considering that salt marshes in the US cover approximately 3.8 million acres (Burns and Gordon, 2021) or approximately 0.2% of the estimated 2.2 billion acres of land with non-urban land uses (derived from Bigelow and Borchers, 2017) that have the potential to sequester carbon¹⁰.

In summary, physical disturbance of the high-marsh surface, salinity reduction (of the marsh soil porewater and shallow groundwater) and influx of nutrient-laden runoff are development-related factors that, separately or together, may promote non-native Phragmites growth in salt marshes.

1.2 Historical Occurrence of Phragmites in the Scarborough Marsh

Invasion by non-native Phragmites poses several environmental problems for the Scarborough Marsh and other coastal salt marshes. As an aggressive invasive plant, it can rapidly overtake native salt marsh plant species and change the salt-marsh habitat, ecology and hydrology. Phragmites growth in the Scarborough Marsh generally occurs in the high-marsh regions along the areas bordering the upland fringe which is dominated by non-halophytes.

¹⁰ Non-urban land uses with carbon sequestration potential include grassland, pasture, rangeland, cropland, forests, wetlands, tundra, unproductive woodland, parks and wildlife areas.

Scarborough Marsh covers an area of approximately 3,070 acres¹¹ characterized as salt marsh dominated by halophytes. Approximately 78% of this area is considered high marsh (lower salinity regime) which is inundated infrequently during periods of extreme high tide and storm surge associated with coastal storms. The remaining 22% is characterized as low marsh (higher salinity regime) which is flooded during each tidal cycle (percentages derived from MGS and SMRPC, 2010). **Figure 1.2-1** adapted from Slovinsky (2014) depicts the low-marsh and highmarsh zones of the Scarborough Marsh.



Figure 1.2-1 Distribution of the low-marsh and high-marsh zones in the Scarborough Marsh.

Adapted from Slovinsky (2014)

Based on anecdotal reports, Phragmites appeared along Route 1 in the Dunstan River subwatershed¹² of the Scarborough Marsh around the late 1970s to early 1980s (Maine Audubon

¹¹ This 3,070-acre salt marsh area is based on Normandeau (2019) calculations using geographic information system (GIS) tools and analyses of the Scarborough Marsh. Normandeau's landward boundary for the salt marsh is the 2015 Highest Annual Tide (HAT) layer from the Maine Geological Survey.

¹² For ease of reference, we have divided the Scarborough Marsh into the following six sub-watersheds based on the major tributary river/creek/brook that flows through the area: Cascade Brook, Dunstan River, Jones Creek, Libby River, Nonesuch River and Scarborough River.

Society, 1999). By 1998 when Maine Audubon conducted its comprehensive study of the Scarborough Marsh ecosystem, 54 Phragmites stands covered on the order of 50 acres, or approximately 1.6% of the Scarborough Marsh (Maine Audubon Society, 1999). Audubon reported that about 40% of this area occurred in the Dunstan River sub-watershed north of Route 1.

Between 2003 and 2013 Friends of Scarborough Marsh (FOSM) and collaborators conducted marsh restoration projects in several regions of the marsh to eradicate the larger Phragmites stands identified in the Maine Audubon report with the goal of re-establishing native salt-marsh halophytes. The initial phase of these restoration efforts focused on improving marsh hydrologic function and increasing porewater salinity of the shallow marsh soils as close as practicable to pre-development conditions favorable to proliferation of native halophytes like *Spartina patens* and *Spartina alterniflora*. The second restoration phase, beginning in 2010, involved mowing dense Phragmites stands to ground level and spray application of the herbicide Rodeo to these areas. The areas treated by either hydrologic restoration or mowing/herbicide application are listed in **Appendix A**. While both treatment regimens achieved some short-term success at controlling this invasive plant, dense Phragmites stands currently occupy many of the areas that were treated by mowing/herbicides. However, it is important to note that quantitative evaluation to compare the pre-treatment Phragmites coverage to long-term post-treatment conditions is lacking.

In 2018 FOSM contracted Normandeau Associates, Inc. to map the significant occurrences of Phragmites in the Scarborough Marsh and recommend options for controlling this invasive plant species (Normandeau, 2019). The project identified 111 Phragmites stands covering approximately 134 acres (approximately 4.4% of the Scarborough Marsh) and 54 diffuse/small stands. Normandeau posited that tidal restrictions and influx of stormwater from adjacent commercial and residential developments (i.e., conditions that cause decrease in soil porewater salinity) are likely the principal factors contributing to growth of these dense Phragmites stands. Smaller isolated occurrences of Phragmites were also documented on elevated marsh micro-topography (e.g., hay roads, small berms and mounds) that appear to be relics of marsh plain modifications related to historical salt marsh haying and disturbances from marsh mowing/spraying equipment associated with the referenced marsh restoration efforts. **Figure 1.2-2** adapted from Normandeau (2019) depicts Normandeau's Phragmites study area, the locations of the major Phragmites stands identified in the study and the general locations of the six major sub-watersheds of the Scarborough Marsh. The largest concentrations of Phragmites occur in the Dunstan River and Libby River sub-watersheds.

Normandeau identified several methods to control the spread of Phragmites including hydrologic modifications such as adding more large-diameter culvert capacity or bridges where

feasible (e.g., under Route 1 to enhance tidal flow into the upper Dunstan River sub-watershed) to improve tidal flushing into the affected areas, application of herbicide as had been done previously, and burning. Based on municipal and environmental considerations, FOSM determined that herbicide application and burning are unfeasible for controlling invasive Phragmites, leaving enhancement of tidal flushing and control of stormwater drainage onto the marsh plain as the remaining Phragmites mitigation options.

Major tidal restrictions in Dunstan River, Libby River and Jones Creek will require infrastructure alterations beneath Route 1, Eastern Trail, Black Point Road and Pine Point Road. However, hydrologic monitoring and modeling to understand the scope of the problem and the potential solutions will be necessary before these infrastructure-based solutions can be designed and implemented.

Examination of the Town of Scarborough's GIS layer titled 'Drainage Utilities' shows that numerous large Phragmites stands identified by Normandeau are directly adjacent or downgradient from areas where roadway ditches and culverts, drainage swales/gullies and stormwater control structures (e.g., detention pond outfalls, street underdrain pipes) discharge runoff onto the high-marsh plain. Mindful of Silvestro *et al.*'s. (2005) conclusion that salinity is likely only one important factor influencing halophyte growth, we set out to study the salinity regimes of several large Phragmites stands receiving stormwater discharges from these drainage structures.

1.3 Study Goals

The goals of this study were threefold:

- 1. Characterize the salinity of shallow groundwater (depth of 1-9 feet) below dense Phragmites stands that are downgradient from three concentrated stormwater discharges.
- 2. Using the specific conductivity as a proxy for salinity¹³, characterize the porewater specific conductivity of the shallow organic soils (depth of 0 6 inches) in and around seven large Phragmites stands that are downgradient from concentrated runoff sources. Since conductivity is a measure of electrical potential, its value will increase with rising salinity due to the charged nature of the ions present in the salts being measured with salinity. The strong connection between salinity and electrical

¹³ The practice of using soil electrical conductivity as a proxy for soil salinity surveys covering large areas is common in agriculture and soil science. For example, Yang *et al.* (2019) used electrical conductivity of topsoil samples (electrical conductivity measurements made in the laboratory) to identify salt-affected areas in agricultural regions of the Heihe River Basin in northwestern China.

- conductivity coupled with wide availability of instruments to measure conductivity make electrical conductivity a good proxy for salinity (Yang *et al.*, 2019).
- 3. Evaluate the potential effects of stormwater discharge and subsequent growth of Phragmites on the positive salinity gradient observed by researchers between the high-marsh region of a healthy salt marsh and the high marsh/low-marsh boundary (i.e., salinity increases away from the marsh fringe toward the high-marsh/low-marsh boundary).

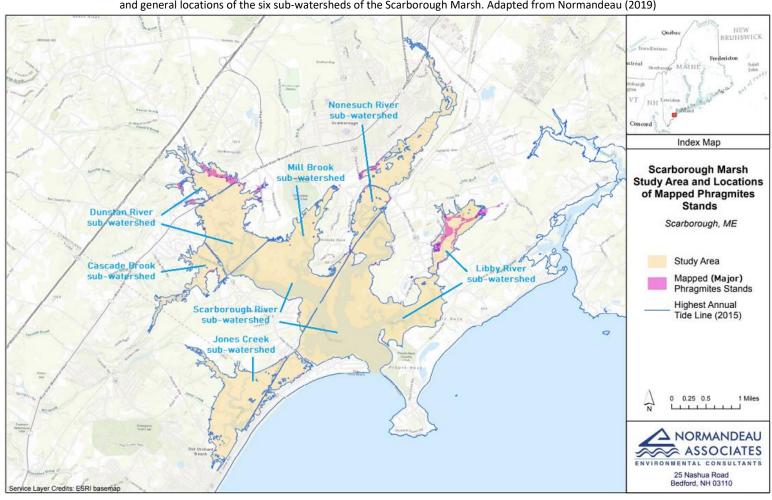
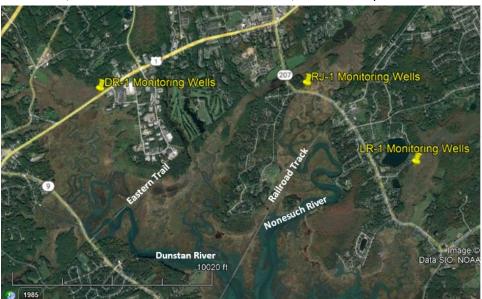


Figure 1.2-2 Normandeau's (2019) Phragmites study area, locations of the major Phragmites stands identified and general locations of the six sub-watersheds of the Scarborough Marsh. Adapted from Normandeau (2019)


2 METHODS

2.1 Groundwater Salinity Evaluation

2.1.1 Site Selection

In August 2020, we installed groundwater monitoring wells in three Phragmites stands to monitor groundwater salinity. Downgradient orientation from stormwater discharges related to road ditches, piped outfalls or drainage swales/gullies and easy site access were the key factors we used to guide site selection. The three groundwater monitoring locations shown in **Figure 2.1.1-1** are in the Dunstan River (site DR-1), Libby River (site LR-1) and Nonesuch River (site RJ-1) sub-watersheds of the Scarborough Marsh. Refer to **Figure 1.2-2** above for the locations of these sub-watersheds. The Dunstan and Libby River sites are in the Scarborough Marsh Wildlife Management Area on property owned by the State of Maine and managed by the Department of Inland Fisheries and Wildlife. The Nonesuch River site is on private land.

Figure 2.1.1-1 Locations of groundwater monitoring sites on Google Earth 1985 imagery. DM-1is in Dunstan River sub-watershed; RJ-1 is in Nonesuch River sub-watershed; LR-1 is in Libby River sub-watershed.

Major sources of stormwater runoff for the Dunstan River site (DR-1) include a shallow ravine that captures runoff from several residential and commercial developments, parking lots and streets. A long section of Route 1 also drains into this area. Runoff sources for the Nonesuch River (RJ-1) site include one residential property and a short section of road ditch along Black Point Road. The Libby River site (LR-1) receives runoff from several sources including piped outfalls for underdrains along Clearwater Drive and stormwater detention basins.

2.1.2 Monitoring Wells

Monitoring wells are labelled as follows: Dunstan River sub-watershed wells are designated DR-1S and DR-1M; wells in the Libby River sub-watershed are designated LR-1S, LR-1M and LR-1D; wells in the Nonesuch River sub-watershed wells are designated RJ-1S and RJ-1M. The S, M and D suffixes indicate shallow depth, intermediate depth and deep wells, respectively.

Each monitoring well consists of solid 3/4-inch diameter Schedule 40 PVC pipe with the bottom 0.5-ft section perforated with eight 1/8-inch diameter drillholes to allow groundwater from the adjacent saturated soil to flow into the well. A solid PVC end cap is affixed to the bottom end of each monitoring well to minimize intrusion of fine organic soil into the well during installation.

We installed the monitoring wells at the desired depths by applying hand pressure. Well depths ranged from 3.0 to 9.1 ft below the marsh surface, and the perforated section (hereafter, the *screen*) of each well is in direct contact with the native soil encountered at depth (i.e., the screen interval is not encased in a filter medium such a textile filter or filter sand). We installed a bentonite clay surface seal around each monitoring well from the marsh surface down to a depth of 0.5 ft.

Groundwater sampling occurred on the following dates: August 28, 2020; September 21, 2020; and October 14, 2020. For each monitoring event we measured depth to the groundwater surface in the wells with a 1/2-inch diameter copper tubing endcap, (aka 'plopper') taped to a metal measuring tape. Sample collection relied on dedicated bailers (i.e., one bailer dedicated to one well for each sampling event) constructed from 1-ft sections of 1/2-inch diameter copper pipe with a copper end cap. Clean polyester twine attached to the top portion of the bailer was used to lower and retrieve the bailer during sample collection. We evacuated the equivalent of one volume of standing water from each well prior to collecting a groundwater sample for salinity testing. After each sampling event, we decontaminated the bailers by rinsing with copious amounts of deionized water and refitted each bailer with new twine.

We used a VEE-GEE STX-3 refractometer with a range of 0-100 parts per thousand (ppt) to measure the salinity of each groundwater sample. VEE-GEE reports an accuracy of 1.0 ppt for this model. Refractometer calibration checks with a 35-ppt refractometer calibration solution (vendor: Aqua Craft Products) occurred before sampling at each of the three monitoring sites. Following salinity measurement for each monitoring well sample, we rinsed the refractometer with deionized water to minimize the potential for contaminating subsequent samples.

2.1.2 Soil Borings to Understand Marsh Stratigraphy

We used a standard metal soil screw-auger (with 6-inch auger section) to collect marsh soil samples down to the depth of the deeper(est) monitoring well at each of the three locations.

We collected consecutive soil samples at 6-inch depth intervals within the same borehole or adjacent boreholes, depending on site conditions.

Description of the organic soil samples is generally based on the classification system of Von Post (1921) as presented in the Alaska Department of Transportation and Public Building's *Guide to Description and Classification of Peat and Organic Soil* (Alaska DOT, 2007). Organic soil texture in this classification ranges from *fibric* (relatively undecomposed plant matter with less than 67% plant fibers¹⁴) through *hemic* (intermediate decomposition with 33 - 67% fiber content) and *sapric* (highly decomposed with less than 33% fiber). Fiber refers to relatively undecomposed plant and root fragments. At depth the matrix for these fibers is humus, which is highly decomposed dark brown organic material with a very fine-grained amorphous texture. Humus may also contain variable amounts of silt/fine sand.

Appendix B presents subsurface soil information for each of the three monitoring sites along with monitoring well diagrams showing depths of well placement, depth and stratigraphic position of the well screen and depth of the shallow groundwater table in each well on 8/28/2020.

2.2 Evaluation of Electrical Conductivity in Shallow Soil Porewater

2.2.1 Phragmites Site Selections, Site Nomenclature and Site Descriptions

We selected seven large Phragmites stands in the following sub-watersheds to study the porewater salinity of the shallow marsh soil: Dunstan River (three stands/sites: DR-A, DR-B and MR-A); Libby River (one stand, sub-divided into five sites: LR-A, LR-B, LR-C, LR-D and LR-E); Nonesuch River (three stands/sites: NR-A, NR-B and NR-C). Except for study site NR-C¹⁶, these Phragmites stands are downgradient from concentrated stormwater discharges originating from stormwater conveyances including roadway ditches and culverts, detention/retention basin outflows and natural or created drainage channels (including a natural ravine and several low-profile gullies/swales).

At each site we surveyed at least one transect oriented perpendicular to the marsh fringe and measured the electrical conductivity of the shallow soil across the Phragmites stand and a short distance beyond the abrupt Phragmites 'front' where Spartina (either subspecies *Spartina alterniflora* or *Spartina patens*) is the dominant plant species. We sub-divided the Libby River

¹⁵ Stratigraphic is an adjective for stratigraphy which refers to the order and relative position of soil and bedrock layers (i.e., strata/stratum) in the subsurface.

¹⁴ Fiber refers to plant and root fragments.

¹⁶ Site NR-C is on the order of 100 ft directly south of Black Point Road. Although it may be impacted by diffuse stormwater runoff from the roadway, no stormwater conveyance structures, such as ditches and culverts, discharge into this area of the Scarborough Marsh.

Phragmites stand into five sites to accommodate multiple runoff sources and the large areas between them. At each site except site LR-B¹⁷, we designated transects that are oriented perpendicular to the marsh fringe as either 'source' transects (i.e., directly downgradient from a runoff source) or 'off-gradient' transects (i.e., within the same Phragmites stand as a source transect, but laterally distant from the source transect). Both the source and off-gradient transects originate from the marsh fringe. We designated other transects that are oriented parallel or obliquely to the marsh fringe as 'filler' transects; the intended purpose of these was to help delineate a potential low-salinity runoff zone on the high-marsh plain.

The source transects include DR-A, DR-B and MR-A (Dunstan River sub-watershed); LR-A and LR-B (Libby River sub-watershed); and NR-A and NR-B (Nonesuch River sub-watershed). Offgradient transects include T-1a/DR-A (at site DR-A in Dunstan River sub-watershed), LR-C and LR-E (at sites LR-C and LR-E in the Libby River sub-watershed) and NR-C (at site NR-C in the Nonesuch River sub-watershed). More detailed descriptions of these sites, transects and runoff sources are presented below.

Figure 2.2.1-1 shows the general locations of the seven Phragmites stands included in this study. Detailed site maps showing the transect locations and electrical conductivity information for the survey points are in **Appendix C**.

• **Dunstan River Sub-Watershed Sites** - Site DR-A is downgradient from a shallow ravine (refer to **Figure 2.2.1-2**) located to the northeast. The ravine drains the surrounding woodlands, residential and commercial properties, parking lots, streets and a section of Route 1. Source transect DR-A is directly downgradient from this ravine. Site DR-B is downgradient from a gully that drains the commercial and industrial properties and streets located directly east. Site MR-A is downgradient from a culvert that drains a section of Milliken Road and Route 1. **Figure 2.2.1-3** shows the general locations of these three sites on a Google Earth aerial map background.

¹⁷ Site LR-B in the Libby River sub-watershed is a constellation of eight survey points used to characterize the porewater specific conductance near groundwater monitoring site LR-1 in an area dominated by Phragmites.

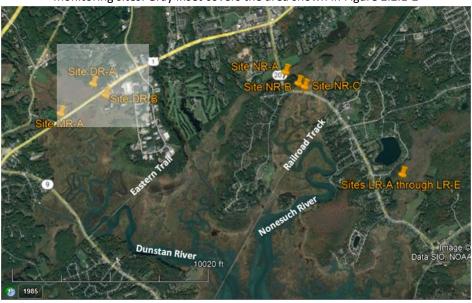
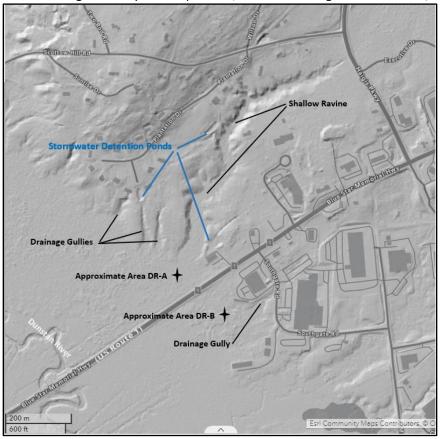



Figure 2.2.1-1 Google Earth 1985 imagery showing general locations of porewater salinity monitoring sites. Gray inset covers the area shown in Figure 2.2.1-2

Figure 2.2.1-2 LIDAR hill-shade overlay map showing the ravine, drainage gullies and detention ponds near site DR-A and drainage gully near site DR-B. Refer to Figure 2.2.1-1 inset for the general location of this figure (Source: Maine Geological Survey web map viewer; unanotated image downloaded 11/16/2022)

Page 5 - Report - Scarborough Marsh Phragmites Salinity Study

Figure 2.2.1-3 Google Earth 1985 imagery showing general locations of porewater study sites in the Dunstan River sub-watershed

Libby River Sub-Watershed Sites - Site LR-A is directly southeast and downgradient from underdrain outfalls that drain a quarter-mile section of Clearwater Drive and the adjacent residential properties (refer to Figure 2.2.1-4). Site LR-B is a constellation of eight survey points used to characterize porewater specific conductance around groundwater monitoring site LR-1 in an area dominated by Phragmites; it is not directly downgradient from a source of concentrated stormwater discharge. Site LR-C includes off-gradient transect LR-C. Site LR-D is directly downgradient from a stormwater detention basin near 25 Clearwater Drive, and it includes source transect LR-D. Site LR-E consists of two closely spaced parallel transects; we combined data from short sections of each transect to create off-gradient transect LR-E.

Nonesuch River Sub-Watershed Sites - Site NR-A drains a half-mile section of Black Point Road to the north (refer to Figure 2.2-5). Site NR-B receives runoff from a residential property and a short section of Black Point Road. Site NR-C consists of two parallel transects (T-north/NR-C and T-south/NR-C) which run between the forested marsh upland fringe and a non-outlet marsh-plain ditch oriented perpendicular to each transect. We designated the combination of these two transects as off-gradient transect NR-C.

We used both the source and off-gradient transects to examine the electrical conductivity profiles of the Phragmites stands with distance from the marsh fringe and to assess whether a statistically significant difference exists between paired source and off-gradient transects (discussed below in Section 3.2.4). As discussed earlier, the high-marsh region of a healthy salt marsh generally displays a positive salinity gradient with salinity increasing away from the

marsh fringe toward the high-marsh/low-marsh boundary. As discussed in Section 1.3, one of our ancillary goals was to understand if discharge of runoff and subsequent growth of Phragmites alter this condition.

Figure 2.2.1-4 Google Earth 1985 imagery showing locations of porewater study sites in the Libby River sub-watershed

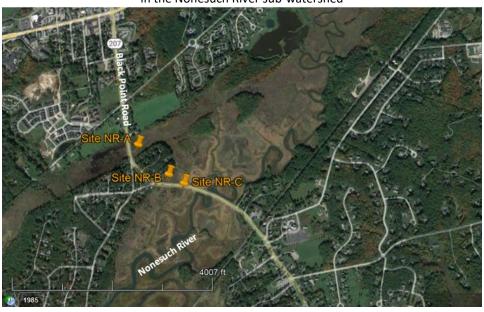


Figure 2.2.1-5 Google Earth 1985 imagery showing locations of study sites in the Nonesuch River sub-watershed

2.2.2 Marsh-Fringe Reference Sites

In June 2022, we conducted a reconnaissance survey in four locations (total of 10 survey points) in the Dunstan River, Libby River and Nonesuch River sub-watersheds to characterize the porewater specific conductance in continuous bands of *Spartina patens* along the marsh fringe where evidence of anthropogenic alteration and stormwater inputs (i.e., from roads, streets and commercial/residential developments) are absent. With one exception¹⁸, the marsh fringe in these areas consisted of a mixture of shrubs, salt-marsh grasses, rushes and/or sedges with adjoining mature forest on the upland side of the fringe. These porewater survey points are within 1 to 9 meters of the marsh fringe in areas where *Spartina patens* was the only plant present. **Figures 2.2.2-1A** through **2.2.2-1C** show the general locations of these marsh-fringe reference sites (reference sites).

2.2.3 Field Measurements

Phragmites Sites – As discussed above in **Section 2.2.1**, we oriented the initial survey transects in each Phragmites stand roughly perpendicular to the marsh fringe and added filler transects to increase sampling density based on preliminary examination of the field data and to delineate the breadth of potential low-salinity runoff zones proximal to the source transects. Except for sites LR-E and NR-C¹⁹ which were surveyed at 5-meter intervals, survey point spacing

¹⁸ Station 25 in the Nonesuch River sub-watershed is adjacent to a low soil scarp adjoining a residential property bordered with shrubbery.

¹⁹ Sites LR-E and NR-C were surveyed in conjunction with A. DeVecchis' Undergraduate Research Opportunities Program (UROP) project research at the University of Southern Maine in 2020.

was approximately 20 meters along the transects, with extra points added to accommodate notable changes in dominant plant species, marsh pools and creeks (including dry channels).

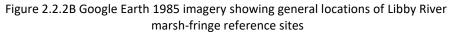



Figure 2.2.2-1A Google Earth 1985 imagery showing locations of the Dunstan River marsh-fringe reference sites

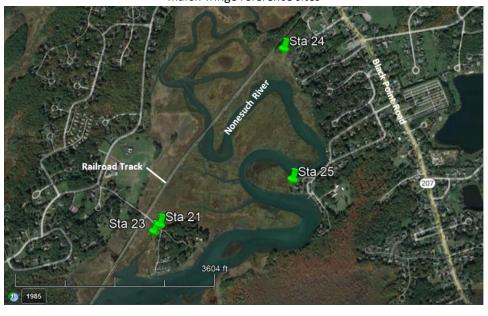


Figure 2.2.2-1C Google Earth 1985 imagery showing general locations of marsh-fringe reference sites

Marsh-Fringe Reference Sites – As discussed in **Section 2.2.2**, the marsh-fringe reference site survey points are within 1 to 9 meters of the marsh fringe (measured approximately perpendicular to the fringe) in tracts of *Spartina patens* (i.e., it was the only plant present).

Electrical Conductivity Measurements – We used an Aquaterr EC-350 portable soil probe to measure the soil moisture (%), temperature ($^{\circ}$ F), and electrical conductivity (microsiemens (μ S)/cm; proxy for salinity) of the shallow soil surrounding the probe at all survey sites.

At each survey point, we inserted the Aquaterr metal probe tip into the soil to a depth of approximately six inches and allowed it to equilibrate with the soil environment for at least one minute before collecting data for the target parameters. We encountered four instances (two survey points at site DR-A and two at the marsh-fringe reference sites) where electrical conductivity exceeded the 2,000 μ S/cm measurement limit of the instrument. For these four locations we used 2,000 μ S/cm as the default electrical conductivity value.

We used a Garmin GPSmap 62s unit to determine the geographic coordinates for each survey point. We also noted the dominant plant species at the survey points. Using the temperature recorded for the shallow soil at each point we converted electrical conductivity measurements to <u>specific conductance</u>, or electrical conductivity standardized to 25°C, based on the following equation:

specific conductance = electrical conductivity / (1 + (0.02 * (soil temperature - 25)))

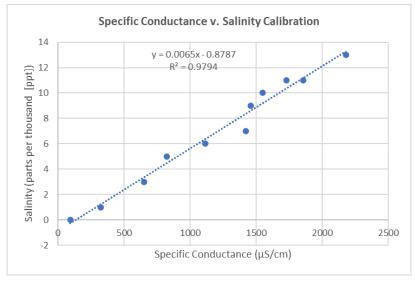
where specific conductance and electrical conductivity units are microsiemens (μ S)/cm and soil temperature is in degrees Celsius.

Although we relied on specific conductance to assess salinity-based relationships among the study sites and among the dominant plants species at each site, we also calibrated specific conductance to known water salinities (salinities measured using the refractometer discussed above in **Section 2.2.1**) determined for tap water (from a drilled bedrock well) amended with serial aliquots²⁰ of brackish water collected from the Dunstan River during flood tide. **Table 2.2.3-1** summarizes these specific conductance and salinity data, and **Figure 2.2.3-1** presents a linear regression plot of the data (specific conductance v. salinity).

The regression equation for the trendline plotted through the data presented in **Table 2.2.3-1** is

$$y = 0.0065x - 0.8787$$

where *y* is salinity and *x* is specific conductance. Based on an r-squared value of 0.9794, the regression equation explains approximately 98% of the variability in the salinity values, indicating that the linear relationship between specific conductance and salinity is very strong. For the discussions that follow in **Sections 3.2** and **4.0**, where appropriate we present both specific conductance and salinity, with salinity calculated using the regression equation presented above.


We plotted specific conductance and dominant plant species on Google Earth base maps shown in **Appendix C**. **Appendix D** presents the porewater specific conductance data for the survey points. Phragmites was the dominant plant species adjacent to the marsh fringe at all the study sites. Subordinate clusters of narrow-leaf cattail, *Typha angustifolia*, were present in depressions within the Phragmites stands. As discussed earlier, we designated the conspicuous boundary between the areas dominated by Phragmites and those dominated by Spartina (generally short-form *Spartina alterniflora* except for site DR-B where *Spartina patens* was dominant) as the Phragmites 'front' after which Phragmites clusters may have been present but the plant was not the dominant species. **Figure 2.2.2-2** presents photographs of the four dominant plants encountered in the study.

²⁰ The aliquots of brackish water ranged from 97 to 127 ml.

Table 2.2.2-1 Salinity and specific conductance data for various surface water samples

Specific Conductance (µs/cm)	Salinity (ppt)
93	0
323	1
654	3
825	5
1115	6
1421	7
1457	9
1549	10
1732	11
1858	11
2179	13

Figure 2.2.3-1 Scatterplot for the salinity versus specific conductance data presented in Table 2.2.3-1

Phragmites (Phragmites australis)

Narrow-leaf cattail (Typha angustifolia)

Spartina patens showing the typical 'cowlick' pattern.

Spartina alterniflora on riverbank

Figure 2.2.2-2 Photos of the four dominant plant species encountered in the study areas

3 STUDY RESULTS AND DISCUSSION

3.1 Marsh Stratigraphy and Groundwater

3.1.1 Marsh Stratigraphy at Groundwater Monitoring Sites

Groundwater in the pore spaces (i.e., porewater) of the shallow soil layers on a salt marsh provides water and minerals to the roots of the halophytes that grow on the marsh surface. Information about the groundwater levels in these soil layers is important for understanding the relative position and movement of groundwater beneath each site. Refer to **Appendix B** for the soil boring logs and the vertical position of groundwater in the underlying soil units at each boring location.

Boring DM-1 in the Dunstan River Sub-Watershed – Soil boring DM-1 reached a depth of 4.5 ft below the marsh surface. The soil stratigraphy at this location consists of a surface layer²¹ of fibric soil approximately 1.5 ft thick, over 1.0 ft of hemic soil, over 0.5 ft of fibric soil to a depth of 3.0 ft. The remainder of the boring encountered very fine sand with a trace amount of plant and root fragments. Orange-brown mottles (small patches discolored from oxidation) in the lower 0.5 ft (depth interval: 4.0 - 4.5 ft) of the boring indicate the soil at this depth alternated between saturated and unsaturated conditions²² before becoming fully saturated under the submerged conditions required for deposition of the overlying sand and organic soil.

The screen section in monitoring well DM-1S rests at 2.6 - 3.1 ft below the marsh surface in the upper part of the very fine sand unit. The screen in well DM-1M is at 3.4 - 3.9 ft below grade in the very fine sand unit.

Boring LR-1 in the Libby River Sub-Watershed – Soil boring LR-1 reached a depth of 9.1 ft below the marsh surface. The stratigraphy at this location is predominantly fibric soil to the bottom of the boring. Three variably textured mineral soil units encountered at the following depths were likely deposited during periods of brief sea-level rise and/or increased wave energy that rendered conditions unfavorable for development of salt-marsh soils.

• 4.0 - 4.5 ft: silty, very fine sand

• 6.0 - 7.5 ft: organic silt

• 8.5 - 9.1: silty, very fine sand

The screen in monitoring well LR-1S rests at 2.5 - 3.0 ft below grade in the upper fibric soil unit. The screen in well LR-1M is in fibric soil at 5.5 - 6.0 ft below grade. The screen in well LR-1D is at

²¹ We have assumed that the soil layers beneath the marsh surface are horizontal or nearly so.

²² Unsaturated conditions allow atmospheric oxygen to react with the metallic ions in fine-grained soils (i.e., silts and clays) to create metal oxides (e.g., iron oxides). These discolored areas generally occur as irregular pods adjacent to soil fractures.

8.6 - 9.1 ft below grade in lower fibric soil unit, which also has millimeter-scale laminae of silty, very fine sand.

Boring RJ-1 in the Nonesuch River Sub-Watershed – Soil boring RJ-1 reached a depth of 4.0 ft below the marsh surface. The soil stratigraphy at this location consists of a 1.5 ft thick surface layer of fibric soil over 0.5 ft of hemic soil. Very fine sand is present at 2.0 - 3.5 ft below grade. Although 1 ft shallower than the very fine sand bed observed in DM-1 (depth of very fine sand in DM-1 is 3.0 - 4.5+ ft), it is plausible that these two sandy units were deposited contemporaneously in a beach environment during a period of elevated sea-level. Additional analyses, e.g., age-dating using foraminifera and pollen in the soil, would be necessary to explore this theory. The remainder of the boring encountered fibric soil.

The screen in monitoring well RJ-1S lies at 1.5 - 2.0 ft below the marsh surface in the thin hemic soil unit. The screen in well RJ-1M rests in the lower portion of the underlying very find sand unit at 2.9 - 3.4 ft below grade.

3.1.2 Groundwater Levels

Table 3.1.2-1 presents groundwater levels for the seven monitoring wells involved in this study. The soil and monitoring well logs presented in **Appendix B** depict these groundwater levels in graphical format to aid in understanding the hydraulic relationships among/between the stratigraphic units at each site. Groundwater levels show higher variability at site LR-1 and less variability at sites DR-1 and RJ-1.

The shallow groundwater table at all three sites was within the upper fibric soil layer. Groundwater depths were greater (i.e., the groundwater table was lower) for the August 28, 2020 monitoring event compared to the subsequent September or October events when evapotranspiration is expected to be less. A lower rate of evapotranspiration in late summer/early fall allows a greater portion of rainfall to recharge the shallow soil aquifer, thereby raising the groundwater table closer to ground surface. Groundwater levels in September and October were similar for the individual wells.

Groundwater levels on 8/28/2020 ranged between 1.3 and 2.6 ft below grade in DR-1S and DR-1M, which is unexpected since both well screens occupy similar depths in the same stratigraphic unit. Depth to groundwater was 0.3 ft in both RJ-1S and RJ-1M for this monitoring event, which suggests that the very fine sand unit in contact with the RJ-1M well screen has a good hydraulic connection with the overlying fibric soil that surrounds the RJ-1S well screen. Groundwater levels in LR-1S, LR-1M and LR-1D were 0.4, 2.0 ft and 8.5 ft below grade, respectively, for the same date.

Monitoring Well	Groundwater Depth (ft below grade)			
	8/28/2020	9/21/2020	10/14/202	
DR-1 S	1.3	0.4	0.4	
DR-1 M	2.6	0.6	0.5	
LR-1 S	0.4	0.2	0.3	
LR-1 M	4.2	0.4	0.5	
LR-1 D	8.5	7.9	7.8	
RJ-1 S	0.2	0.0	0.0	
RJ-1 M	0.2	0.1	0.0	

Table 3.1.2-1 Groundwater levels in monitoring wells in Scarborough Marsh

Although none of the monitoring wells has a bentonite clay seal to hydraulically isolate its screen from the overlying and underlying aquifer regions, it is noteworthy that groundwater levels in wells LR-1S, LR-1M and LR-1D differ by several feet, suggesting the soils surrounding each screen are hydraulically isolated from the others by low-permeability layers (e.g., silty fine sand or clay/silt beds). Moreover, the lower groundwater levels observed in the two deeper wells at this site suggest that the shallow soil aquifer is *recharging* the underlying aquifers units (i.e., where shallow groundwater moves deeper into the aquifer) which is counter to the notion that the Libby River valley should be associated with regional groundwater *discharge* (i.e., upward movement of groundwater into the shallower aquifer region)²³. This recharge relationship persists for all three monitoring events.

3.1.3 Salinity of Groundwater

Groundwater salinities measured in monitoring wells at sites LR-1 and RJ-1 were higher in October 2020 compared to those measured in August and September (**Table 3.1.3-1**), whereas groundwater salinities measured in the two monitoring wells at site DR-1 showed relatively little change. Salinity data for the three monitoring dates are lower than the May 2019 salinities measured in the Libby River (refer to **Figure 3.1.3-1**).

Groundwater salinities for the three monitoring rounds ranged between 0 ppt for LR-1M and LR-1D on 8/28/2021 and 9/21/2021 to 13 ppt in monitoring well RJ-1S on 10/14/2021. Salinities were generally higher in shallow monitoring wells LR-1S and RJ-1S compared to their deeper counterparts. The salinity of water puddled on the marsh surface on 10/14/2021 following two inches of rainfall on the previous day was 1 ppt near site DM-1 in the Dunstan River subwatershed and 6 ppt near site RJ-1 on the Nonesuch River sub-watershed. These values are

²³ Aquifer <u>recharge</u> (i.e., associated with downward movement of groundwater at depth through the soil layers) generally occurs in the upland regions of a watershed, whereas aquifer <u>discharge</u> occurs in the lowland regions of the watershed proximal to wetlands and water bodies such as streams, rivers, lakes and the marine shoreline.

consistent with salinities measured in the shallow monitoring wells at each site on the same day.

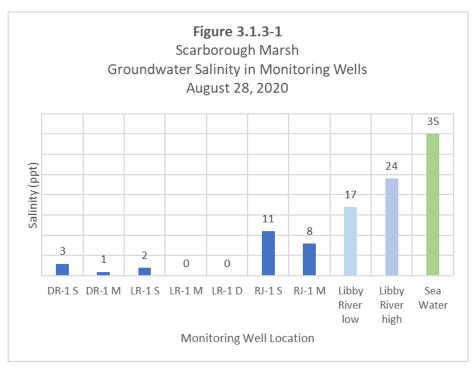

Salinities measured in the shallow peat aquifer at all three sites are lower than the 20-ppt level viewed by some researchers (Burdick and Dionne, 1994; Chambers, 1997) as the upper limit for salinity conditions that support Phragmites growth.

Table 3.1.3-1	Groundwater	salinity in	monitoring w	rells, Sca	arborough	Marsh
---------------	-------------	-------------	--------------	------------	-----------	-------

Mon. Well Well Botton		Salinity in parts per thousand(ppt) *		
Wion. wen	below grade (ft)	8/28/2020	9/21/2020	10-14-2020
DR-1 S	3.1	2 - 3	3	2
DR-1 M	3.9	0 - 1	3	3
LR-1 S	2.0	2	5	7
LR-1 M	3.4	0	0	2-3
LR-1 D	3.0	0	0	1
RJ-1 S	6.0	11	11	13
RJ-1 M	9.1	8	7 - 8	10

Note

^{*} For reference, the salinity of the Libby River measured during the flood tide adjacent to Black Point Road in May 2019 ranged between 17 ppt and 24 ppt (Underwood, 2019, unpublished data)

Note

Libby River salinities were the two highest measured during flood tide in May 2019 near Black Point Road (Underwood, 2019, upublished data).

3.2 Specific Conductance of Porewater in Shallow Soils

This section discusses porewater specific conductance and dominant plant species data for 291 survey points²⁴ at 11 Phragmites study sites and 10 survey points at the *Spartina patens* marshfringe reference sites in the Scarborough Marsh. We present the data and discussion of the results for the Phragmites sites in five sections as follows:

- Section 3.2.1 Descriptive statistics for porewater specific conductance for the 11
 Phragmites study sites, 3 sub-watersheds, and 3 dominant plant species. Readers with only marginal interest in these basic statistics may wish to focus on the two Statistical Comparisons discussions (one for sub-watersheds and one for plants species) in this section.
- **Section 3.2.2** Descriptive statistics for porewater specific conductance at each study site by plant species. Readers with only marginal interest in these basic statistics may wish to skip this section.
- **Section 3.2.3** Phragmites study site comparisons for statistically significant differences in porewater specific conductance.
- **Section 3.2.4** Relationship of soil porewater specific conductance and distance from marsh fringe for both source and off-gradient transects at the Phragmites study sites.
- **Section 3.2.5** Porewater specific conductance data for *Spartina patens* at the marsh-fringe reference sites and comparison of these to the aggregated data for each dominant plant species (i.e., porewater data for each dominant plant species aggregated for all 11 Phragmites study sites).

Appendix D presents porewater specific conductance data for the Phragmites study sites and the marsh-fringe reference sites. **Appendix E** shows data for the statistical analyses discussed in this section.

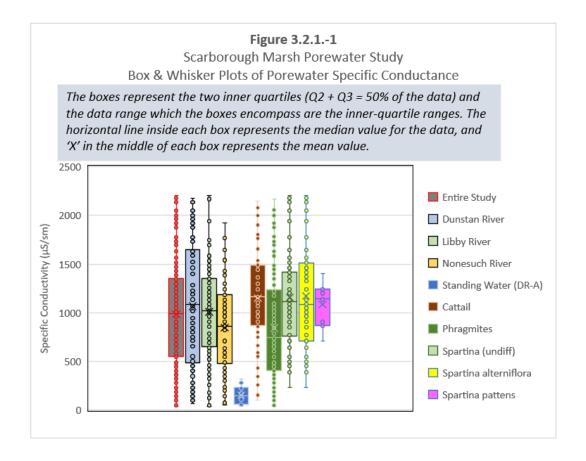
3.2.1 Descriptive and Comparative Statistics for the All Phragmites Study Sites²⁵, Each Sub-Watershed and Each Dominant Plant Species

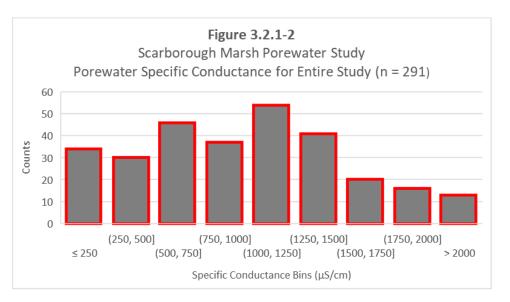
Soil porewater specific conductance data, dominant plant species and transect orientations for each porewater study site are depicted on site maps in **Appendix C** and compiled in table format in **Appendix D**. We also measured the specific conductance of standing water pooled directly downgradient from the drainage ravine in area DR-A in the Dunstan River subwatershed to establish a reference range for specific conductance of late-spring to fall runoff

²⁴ This number includes 72 survey points from A. DeVecchis' 2020 UROP project

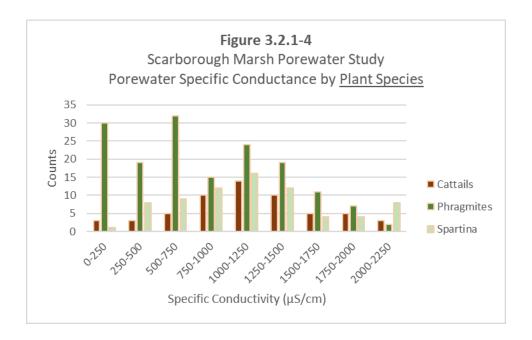
²⁵ Excluding the marsh-fringe reference sites

into this area of the Scarborough Marsh when salinity introduced from winter de-icing salt is expected to be minimal.


Table 3.2.1-1 presents a summary of important descriptive statistics for porewater specific conductance (equivalent salinities in brackets) for the entire study, three sub-watersheds, three dominant plant species, and ten water-pool survey points associated with the drainage ravine at site DR-A. **Figure 3.2.1-1** presents boxplots²⁶ of the specific conductance for these same data. **Figures 3.2.1-2** through **3.2.1-4** are histograms showing the distribution of specific conductance for the entire study, sub-watersheds and dominant plant species, respectively.


Table 3.2.1-1 Phragmites summary specific conductance statistics for the entire study, dominant plant species and sub-watersheds. Specific conductance (μ S/cm) values are unbracketed; salinities [ppt] are in brackets

Category	No. of Points	Min-Max	Mean/Median	Standard Deviation	Normal Distribution?
Entire Study	291	35-2203 [0-13]	984/991 [6/6]	542 [3]	No
Dunstan River Sub-Watershed	92	69-2178 [0-13]	1068/1086 [6/6]	642 [3]	No
Libby River Sub-Watershed	121	35-2203 [0-13]	1008/1016 [6/6]	487 [2]	Yes
Nonsuch River Sub-watershed	78	52-1920 [0-12]	847/861 [5/5]	470 [2]	No
DR-A standing water	10	26-247 [0-1]	123/113 [0/0]	78 [0]	Yes
Cattails	58	99-2146 [0-13]	1149/1161 [7/7]	485 [2]	Yes
Phragmites	159	35-2169 [0-13]	842/744 [6/4]	534 [3]	No
Spartina	74	232-2203 [0-13]	1157/1115 [7/6]	520 [3]	No
Spartina alterniflora	62	232–2203 [1-13]	1175/1091 [7/6]	559 [3]	No
Spartina patens	12	712–1401 [4-8]	1063/1140 [6/7]	220 [1]	Yes


The box represents the two inner quartiles (**Q2 + Q3** = 50% of the data) and the data range which the box encompasses is the **inner-quartile range**. The horizontal line inside the box represents the **median** value, and 'X' in the middle of each boxes represents the **mean** value.

Refresher on Box-and-Whisker Plots (boxplots) and Quartiles - Quartiles divide a numerical data set into four quarters. The first quartile (or lower quartile), Q1, separates the lowest 25% of data from the highest 75%. The second or middle quartile, Q2, is also the median, and it divides the data values into two equal parts. The third quartile (or the upper quartile), Q3, separates the highest 25% of data from the lowest 75%. The upper and lower ends of the 'whiskers' in a boxplot represent the maximum and minimum values.

Page 7 - Report - Scarborough Marsh Phragmites Salinity Study

Entire Study – Porewater specific conductance for the entire Phragmites study ranged from 35 μ S/cm [0 ppt] to 2203 μ S/cm [13 ppt] with a mean of 984 μ S/cm [6 ppt] and a median of 991 μ S/cm [6 ppt]. According to the Shapiro-Wilks normality test these data are non-normally distributed , meaning the data are not symmetrically distributed on both sides of the mean (refer to Figure 3.2.1-2).

<u>Sub-watersheds</u> – Porewater specific conductance data for each sub-watershed are summarized below (also refer to **Figure 3.2.1-3**).

Dunstan River sub-watershed – Porewater specific conductance for the 92 survey points in the Dunstan River sub-watershed ranged between 69 μ S/cm [0 ppt] and 2178 μ S/cm [13 ppt] with a mean of 1068 μ S/cm [6 ppt] and a median of 1086 μ S/cm [6 ppt]. According to the Shapiro-Wilks normality test these data are non-normally distributed.

Libby River Sub-Watershed – Porewater specific conductance for the 121 survey points in the Libby River sub-watershed ranged between 35 μ S/cm [0 ppt] and 2203 μ S/cm [13 ppt] with a mean of 1008 μ S/cm [6 ppt] and a median of 1016 μ S/cm [6 ppt]. According to the Shapiro-Wilks normality test these data are normally distributed.

Nonesuch River Sub-Watershed – Porewater specific conductance for the 78 survey points in the Nonesuch River sub-watershed ranged between 52 μ S/cm [0 ppt] and 1920 μ S/cm [12 ppt] with a mean of 847 μ S/cm [5 ppt] and a median of 861 μ S/cm [5 ppt]. Shapiro-Wilks normality test indicates that these data are non-normally distributed.

Statistical Comparisons - Because the data for two of the sub-watersheds are non-normally distributed, we used non-parametric²⁷ statistical tests to determine if there are statistically significant differences for specific conductance among the three sub-watersheds. The omnibus Kruskal-Wallis Test²⁸ determined that a significant difference(s) (probability [p] \leq 0.05) exists among the data for the three sub-watersheds. To isolate which sub-watersheds are different, we used the post-hoc Dunn's Test pairwise multiple comparison procedure employing the Bonferroni Correction. The test results show that specific conductance data for the Nonesuch River sub-watershed are significantly different (lower; p \leq 0.05) compared to the data for both the Dunstan River and Libby River sub-watersheds. However, the data from the Dunstan River and Libby Rivers sub-watersheds are not significantly different. **Table 3.2.1-2** summarizes this information.

Table 3.2.1-2 Summary of pairwise sub-watershed specific conductance data comparisons using Dunn's Test with Bonferroni Correction

Sub-watershed pair	Significantly Different? p ≤ 0.05
Dunstan v. Nonesuch	Yes
Libby v. Nonesuch	Yes
Dunstan v. Libby	No

Although the inner-quartile (i.e., the 'box' representing the central 50% of the values, or Q2 + Q3) ranges for the three sub-watersheds overlap substantially (refer to **Figure 3.2.1-1** above), note that the median specific conductance for the Dunstan River (1068 μ S/cm [6 ppt]) and Libby River (1008 μ S/cm [6 ppt]) sub-watersheds are 26% and 19%, respectively, greater than the median for the Nonesuch River sub-watershed (847 μ S/cm [5 ppt]).

Standing Water (DR-A) – Specific conductance for 10 survey points in standing water near the mouth of the shallow ravine draining into site DR-A ranged from 26 μ S/cm [0 ppt] to 247 μ S/cm [1 ppt] with a mean of 123 μ S/cm [0 ppt] and median of 113 μ S/cm [0 ppt]. According to the Shapiro-Wilks normality test these data are normally distributed.

<u>Dominant Plant Species</u> – Porewater specific conductance data for each dominant plant species in the study are presented below.

Cattails – Porewater specific conductance for the 58 survey points dominated by cattails ranged between 99 μS/cm [0 ppt] and 2146 μS/cm [13 ppt] with a mean of 1149 μS/cm [7]

²⁷ Non-parametric tests rely on statistical methods which do not make assumptions about the frequency distribution (e.g., such as a normal distribution) of variables being evaluated.

²⁸ Computed using the Real Statistics Package add-in for Microsoft Excel developed by Charles Zaiontz (www.real-statistics.com/free-download/real-statistics-resource-pack/)

ppt] and a median of 1161 μ S/cm [7 ppt]. According to the Shapiro-Wilks normality test these data are normally distributed.

Phragmites – Porewater specific conductance for the 159 survey points dominated by Phragmites ranged between 35 μ S/cm [0 ppt] and 2169 μ S/cm [13 ppt] with a mean of 842 μ S/cm [6 ppt] and a median of 744 μ S/cm [4 ppt]. Shapiro-Wilks normality test indicates these data are non-normally distributed.

Spartina (undifferentiated) – Porewater specific conductance for the 74 survey points dominated by Spartina ranged between 232 μ S/cm [1 ppt] and 2203 μ S/cm [13 ppt] with a mean of 1157 μ S/cm [7 ppt] and a median of 1115 μ S/cm [6 ppt]. Shapiro-Wilks normality test shows that these data are also non-normally distributed.

Considering that short-form *Spartina alterniflora* is the dominant Spartina subspecies for all study sites except site DR-B, where *Spartina patens* is dominant, we also provide the statistics to address these Spartina subspecies.

Spartina alterniflora - Porewater specific conductance for the 62 survey points dominated by *Spartina alterniflora* ranged between 232 μ S/cm [1 ppt] and 2203 μ S/cm [13 ppt] with a mean of 1175 μ S/cm [7 ppt] and a median of 1090 μ S/cm [6 ppt]. According to the Shapiro-Wilks normality test these data are non-normally distributed.

Spartina patens - Porewater specific conductance for the 12 survey points dominated by *Spartina patens* ranged between 712 μ S/cm [4 ppt] and 1401 μ S/cm [8 ppt] with a mean of 1063 μ S/cm [6 ppt] and a median of 1140 μ S/cm [7 ppt]. Shapiro-Wilks normality test classifies these data as normally distributed.

Statistical Comparisons - The Kruskal-Wallis Test identified a statistically significant difference (p \leq 0.05) for specific conductance among the three dominant plant species. Dunn's Test employing the Bonferroni Correction shows that Phragmites data are significantly different (lower; p \leq 0.05) compared to those for both cattail and Spartina (undifferentiated), whereas the data for cattail and Spartina are not significantly different. Although the inter-quartile ranges for the three dominant plant species overlap substantially (refer to Figure 3.2.1-1 above), note that the median specific conductance for the cattails (1149 μ S/cm [7 ppt]) and Spartina (1157 μ S/cm [7 ppt]) are both approximately 36% greater than the median for Phragmites (847 μ S/cm [5 ppt]).

The Kruskal-Wallis Test found no significant difference between *Spartina alterniflora* and *Spartina patens* data.

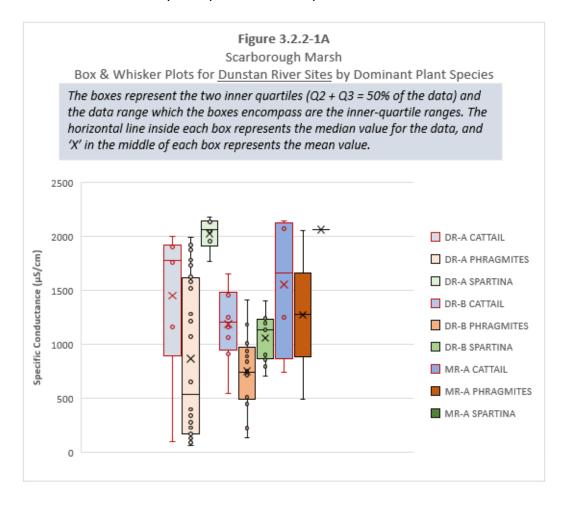
Table 3.2.1-3 summarizes these data.

Table 3.2.1-3 Summary of pairwise plant species comparisons based on specific conductance for the entire study using Dunn's Test

Comparison	Significantly Different? p ≤ 0.05
Cattail v. Spartina	No
Cattail v. Phragmites	Yes
Phragmites v. Spartina	Yes
S. alterniflora v. S. patens	No

3.2.2 Descriptive and Comparative Statistics for Phragmites Study Sites by Plant Species

Table 3.2.2-1 below presents descriptive statistics for specific conductance for each study site according to the three dominant plant species. For clarity, we exclude the equivalent salinity values from this table.


<u>Dunstan River Sites</u> - Figure 3.2.2-1A presents boxplots for specific conductance data by study site and dominant plant species for the Dunstan River sub-watershed

Cattail Data – MR-A has the highest cattail specific conductance of 1555 μ S/cm [9 ppt] followed by DR-A (1454 μ S/cm [9 ppt]) and DR-B (1193 μ S/cm [7 ppt]). DR-B has the smallest inner-quartile range of 532 μ S/cm [3 ppt] followed by MR-A (1255 μ S/cm [7 ppt]) and DR-A (1465 μ S/cm [9 ppt]). DR-A, DR-B and MR-A data overlap and their first quartiles (Q1) are separated by 24 μ S/cm (DR-A and MR-A) and 75 μ S/cm (MR-A and DR-B).

Phragmites Data – MR-A has the highest Phragmites mean specific conductance of 1276 μ S/cm [7 ppt] based on two data points (498 μ S/cm [2 ppt] and 2055 μ S/cm [12 ppt]) followed by DR-A (871 μ S/cm [5 ppt]) and DR-B (754 μ S/cm [4 ppt]). DR-A and DR-B have inner-quartile ranges of 1442 μ S/cm [8 ppt] and 480 μ S/cm [2 ppt], respectively, whereas MR-A's two survey points are insufficient to compute an inner-quartile range. The inner-quartile range for DR-A brackets the smaller DR-B inner-quartile range.

Spartina (undifferentiated) Data – DR-A has the highest mean Spartina specific conductance of 2030 μS/cm [*12 ppt*] followed by MR-A (2065 μS/cm [*13 ppt*] (single point) and DR-B (1063 μS/cm [*6 ppt*]). DR-A and DR-B have inner-quartile ranges of 235 μS/cm [*1 ppt*] and 373 μS/cm [*2 ppt*], respectively. With only one survey point, it is not possible to compute an inner-quartile range for MR-A. The inner-quartile range for DR-A brackets the single point value for MR-A, and neither overlaps with the inner-quartile range for DR-B. The separation between the inner-quartile ranges for DR-A and DR-B (i.e., Q1-DR-A-phrag minus Q3-DR-B-phrag) is 675 μS/cm [*4 ppt*].

The lower specific conductance values for DR-B are noteworthy because DR-A and MR-A have short-form *Spartina alterniflora* beyond the Phragmites front, whereas DR-B has *Spartina patens*. Higher specific conductance for areas dominated by *Spartina alterniflora* in DR-A and MR-A suggests that these areas are at lower marsh elevations that are more frequently flooded by tides than the areas dominated by *Spartina patens* at site DR-B. An elevation survey of the three sites would be necessary to explore this concept further.

Page 12 - Report - Scarborough Marsh Phragmites Salinity Study

Table 3.2.2-1 Summary of descriptive statistics for each study site according to the dominant plant species

Marsh Lobe Study Site		Specific Conductivity (μS/cm) Descriptive Statistics: survey point count / min-max / mean / median / normal?				
iviarsh Lobe	Study Site	Entire Study	Cattail	Phragmites	Spartina	
N/A	Entire Study	291 / 35-2203 / 984 / 991 / no	58 / 99-2146 / 1149 / 1161 / yes	159 / 35-2169 / 842 / 744 / no	74 / 232-2203 / 1157 / 1115 / no	
	DR-A	48 / 69-2178 / 1089 / 1253 / no	6 / 99-2001 / 1454 / 1778 / no	36 / 69-1998 /871 / 544 / no	6 / 1775-2178 / 2030 / 2063 /yes	
Dunstan	DR-B	37 / 142-1656 / 949 / 911 / yes	8 / 550-1656 / 1193 / 1206 / yes	17 / 142-1418 / 754 / 746 / yes	12 / 712-1401 / 1063 / 1140 / yes	
River	MR-A	7 / 498-2146 / 1548 / 2055 / no	4 / 748-2146 / 1555 / 1663 / #	2 / 498-2055 / 1276 / 1276 / #	1 / 2065 / #	
	Ravine mouth pooled runoff	10 / 26-247 / 123 / 113 / yes	n/a	n/a	n/a	
	LR-A	14 / 47-2203 / 812 / 196 / yes	1/175/#	10 / 47-1693 / 460 / 180 / no	3 / 2193-2202 / 2199 / 2200 / yes	
Libby	LR-B	8 / 571-1016 / 733 / 672 / no	0 / n/a	8 / 571-1016 / 733 / 672 / no	0 / n/a	
Libby River	LR-C	9 / 878-1942 / 1389 / 1533 / yes	2 / 962-1568 / 1265 / 1265 / #	4 / 878-1745 / 1315 / 1319 / yes	3 / 1240-1942 / 1572 / 1533 / yes	
River	LR-D	36 / 697-2169 / 1271 / 1208 / yes	13 / 869-1536 / 1169 / 1105 / yes	19 / 697-2169 / 1277 / 1212 / yes	4 / 1372-1946 / 1574 / 1489 / yes	
	LR-E	54 / 35-1514 / 860 / 778 / yes	5 / 258-1188 / 751 / 798 / yes	33 / 35-1487 / 763 / 701 / yes	16 / 552-1514 / 1094 / 1138 / yes	
Nonesuch	NR-A	31 / 52-1070 / 475 / 486 / yes	4 / 151-859 / 544 / 583 / yes	10 / 52-727 / 241 / 212 / no	17 / 232-1070 / 597 / 497 / no	
River	NR-B	29 / 219-1920 / 1141 / 1299 / yes	10 / 342-1805 / 1250 / 1441 / yes	12 / 219-1920 / 1058 / 1106 / yes	7 / 508-1647 / 1130 / 1096 / yes	
Mivei	NR-C	18 / 561-1326 / 1013 / 1063 / yes	5 / 1078-1310 / 1169 / 11128 / yes	8 / 561-1184 / 868 /897 / yes	5 / 978-1326 / 1091 / 1048 / yes	

Notes

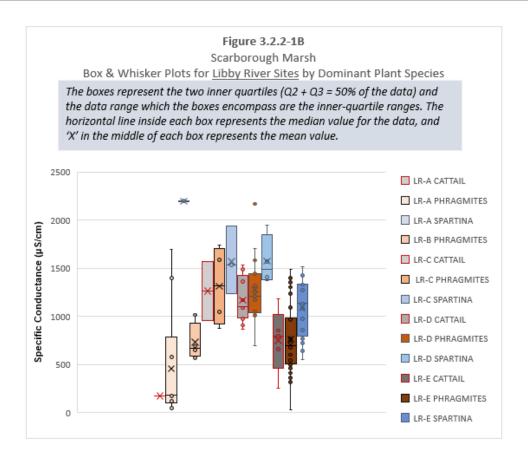
 $\hbox{\it\#indicates inadequate data for Shapiro-Wilks Test to determine data distribution}\\$

N/A or n/a indicates 'not applicable'

normal?: Are the data normally distributed? (yes/no)

<u>Libby River Sites</u> – Figure 3.2.2-1B presents boxplots for specific conductance data by study site and dominant plant species for the Libby River sub-watershed.

Cattail Data – LR-C (two survey points) has the highest mean specific conductance of 1265 μ S/cm [7 ppt] followed by LR-D (1169 μ S/cm [7 ppt]), LR-E (751 μ S/cm [4 ppt]) and LR-A (175 μ S/cm [0 ppt]; 1 survey point). LR-B has no cattail data. LR-D and LR-E have inner-quartile ranges of 443 μ S/cm [2 ppt] and 563 μ S/cm [3 ppt], respectively. LR-A and LR-C have insufficient cattail data (1 and 2 survey points, respectively) to compute inner-quartile ranges.

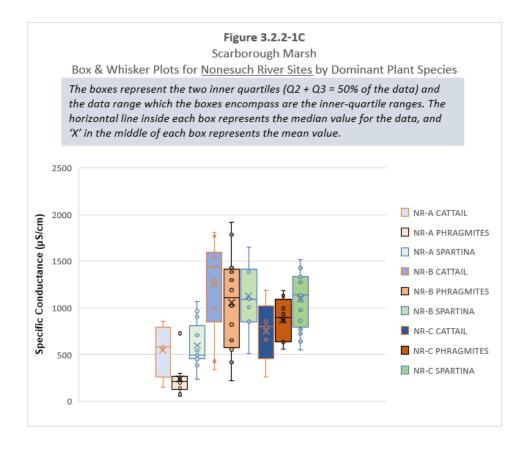

Phragmites Data – LR-C has the highest mean specific conductance of 1315 μ S/cm [8 ppt] followed by LR-D (1277 μ S/cm [7 ppt]), LR-E (763 μ S/cm [4 ppt]), LR-B (773 μ S/cm [4 ppt]) and LR-A (460 μ S/cm [2 ppt]). LR-B had the smallest inner-quartile range of 344 μ S/cm [1 ppt] followed by LR-D (407 μ S/cm [2 ppt]), LR-E (473 μ S/cm [2 ppt]), LR-A (683 μ S/cm [4 ppt]) and LR-C (784 μ S/cm [4 ppt]). Inner quartile ranges for LR-A, LR-B and LR-E overlap, but are distinct (lower) compared to those for LR-C and LR-D, which also overlap.

Spartina (undifferentiated) Data – LR-A has the highest mean specific conductance of 2,199 μ S/cm [13 ppt], followed by LR-D (1574 μ S/cm [9 ppt]), LR-C (1572 μ S/cm [9 ppt]) and LR-E (1094 μ S/cm [6 ppt]). There are no Spartina data for LR-B. LR-A has the smallest inner-quartile range of 10 μ S/cm [0 ppt] followed by LR-D (470 μ S/cm [2 ppt]), LR-E (546 μ S/cm [3 ppt]) and LR-C (702 μ S/cm [4 ppt]). The inner-quartile range for LR-C overlaps with those for LR-D and LR-E, but inner-quartile ranges for LR-D and LR-E data do not overlap. The LR-A inner-quartile range does not overlap with the others.

<u>Nonesuch River Sites</u> – Figure 3.2.2-1C presents boxplots for specific conductance data by study site and dominant plant species for the Nonesuch River sub-watershed.

Cattail Data – NR-B has the highest mean specific conductance of 1250 μ S/cm [7 ppt] followed by NR-C (1169 μ S/cm [7 ppt]) and NR-A (544 μ S/cm [3 ppt]). NR-A has the smallest inner-quartile range of 534 μ S/cm [3 ppt] followed by NR-C (563 μ S/cm [3 ppt]) and NR-B (748 μ S/cm [4 ppt]). The inner-quartile ranges for NR-A and NR-C overlap, and they overlap for NR-B and NR-C. However, there is no inner-quartile range overlap between NR-A and NR-B.

Phragmites Data – NR-B has the highest mean specific conductance of 1058 μ S/cm [6 ppt] followed by NR-C (868 μ S/cm [5 ppt]) and NR-A (241 μ S/cm [1 ppt]). NR-A has the smallest inner-quartile range of 141 μ S/cm [0 ppt], followed by NR-C with 563 μ S/cm [3 ppt] and NR-B with 748 μ S/cm [4 ppt]. The inner-quartile-ranges for NR-B and NR-C overlap, but neither overlaps with NR-A, which spans lower values.


Spartina (undifferentiated) Data – NR-B has the highest mean specific conductance of 1130 μ S/cm [6 ppt] followed by NR-C (1091 μ S/cm [6 ppt]) and NR-A (597 μ S/cm [3 ppt]). NR-A has the smallest inner-quartile range of 351 μ S/cm [1 ppt], followed by NR-C with 546 μ S/cm [3 ppt] and NR-B with 563 μ S/cm [3 ppt]. Inner-quartile ranges for NR-B and NR-C overlap substantially. The inner-quartile ranges for NR-A and NR-B do not overlap, but NR-A and NR-C have a 13 μ S/cm overlap.

3.2.3 Phragmites Study Site Statistical Comparisons

In this section we discuss the results of two statistical pairwise comparisons among the study sites. The first set of comparisons relies on specific conductance data for each site, undifferentiated according to the dominant plant species. The second set of comparisons uses specific conductance values for each of the three dominant plant species partitioned by study site (e.g., NR-A Phragmites, LR- E Spartina, etc.).

<u>Site Pairwise Comparisons (independent of dominant plants species)</u> - Kruskal-Wallis Test results show a statistically significant difference among the study sites (ignoring dominant plant species). We used Dunn's Test pairwise multiple comparison procedure employing the Bonferroni Correction to determine which site pairs are significantly different. With 11 study

sites, there are 55 possible pairwise comparisons²⁹. Dunn's Test results show significant differences ($p \le 0.05$) for 23 site-site pairs. All study sites are significantly different from at least two other sites. On the low end, site DR-A is significantly different from only two sites, whereas at the upper end site NR-A is significantly different from eight sites. **Table 3.2.3-1** shows the 23 significantly different pairwise comparisons among the 11 study sites.

<u>Site Comparisons for Each Dominant Plant Species</u> – As above, Kruskal-Wallis Test determined that some of the study sites within the same dominant plant species are significantly different. As before, we used Dunn's Test to isolate which site-plant species pairs are significantly different. With 10 sites having cattail data, 11 sites with Phragmites data (site LR-B had only Phragmites) and 10 sites with Spartina data, there are 45, 55 and 45 possible site pair comparisons, respectively.

²⁹ The formula for possible number (N) of pairwise comparisons is N = k(k-1)/2, where k is the number of conditions being compared. In this case *number of conditions* = 11 study sites.

LR-C SITES DR-A DR-B MR-A LR-A LR-D LR-E NR-A NR-B DR-A Χ DR-B Χ MR-A Χ Χ Χ LR-A Χ Χ Χ LR-B Χ Χ Х Χ Χ LR-C LR-D Χ LR-E NR-A NR-B NR-C

Table 3.2.3-1 Summary of statistically significant different (p < 0.05) site pairs based on Dunn's Test. Site pairs that are significantly different [p \leq 0.05] are shaded and marked with an X.

Dunn's Test results show significant differences (p \leq 0.05) for 10 cattail site pairs, 18 Phragmites site pairs and 17 Spartina site pairs. **Table 3.2.2-2** below summarizes these data according to dominant plant species.

Other important observations include:

- The median specific conductance for short-form Spartina alterniflora at site DR-A is almost twice that of Spartina patens at site DR-B, suggesting that either runoff dilution of tidal flux is significantly greater for DR-B, or that, as discussed in Section 3.2.2, areas dominated by Spartina alterniflora at site DR-A are at lower elevations (i.e., more frequently flooded during high tide) compared to area dominated by Spartina patens-dominated at site DR-B.
- Median specific conductances for all three plant species at site NR-A are uniformly lower than those at NR-B, although both sites border the same small tributary creek to the Nonesuch River. This suggests that dilution of tidal flux with stormwater is greater for site NR-A or that site NR-A is at a higher elevation (i.e., less frequently flooded during high tides). Greater influx of stormwater into site NR-A is plausible considering that the large freshwater wetland directly west of NR-A and drainage from a half-mile section of Black Point Road both discharge into NR-A, whereas NR-B receives runoff from a relatively short section of road ditch and the adjacent residential property.

One important observation to note from **Table 3.2.2-2** is that the median specific conductance values for most site pairs which are statistically different generally differ by a factor of two or more.

Table 3.2.3-2 The significantly different site pairs within each dominant plant species.
Median specific conductance (μ S/cm) for each site in parentheses.

Cattail	Phragmites	Spartina (undifferentiated)
DR-A (1778) v. LR-A (#)	DR-A (544) v. LR-A (180)	DR-A (2063) v. DR-B (1140)
DR-A (1778) v. LR-E (798)	DR-A (544) v. LR-D (1212)	DR-A (2063) v. LR-E (1138)
DR-A (1778) v. NR-A (583)	DR-A (544) v. NR-A (212)	DR-A (2063) v. NR-A (497)
DR-B (1206) v. NR-A (583)	DR-B (746) v. LR-D (1212)	DR-A (2063) v. NR-B (1096)
MR-A (1663) v. NR-A (583)	DR-B (746) v. NR-A (212)	DR-A (2063) v. NR-C (1048)
MR-A (1663) v. LR-A (#)	LR-A (180) v. LR-C (1319)	DR-B (1140) v. LR-A (2200)
MR-A (163) v. LR-E (798)	LR-A (180) v. LR-D (1212)	DR-B (1140) v. NR-A (497)
LR-D (1208) v. NR-A (583)	LR-A (180) v. LR-E (701)	LR-A (2200) v. LR-E (1138)
LR-E (798) v. NR-B (1299)	LR-A (180) v. NR-B (1106)	LR-A (2200) v. NR-A (497)
NR-A(583) v. NR-B (1299)	LR-B (672) v. LR-D (1212)	LR-A (2200) v. NR-B (1096)
	LR-B (672) v. NR-A (212)	LR-A (2200) v. NR-C (1048)
	LR-C (1319) v. NR-A (212)	LR-C (1533) v. NR-A (497)
	LR-D (1212) v. LR-E (701)	LR-D (1489) v. NR-A (497)
	LR-D (1212) v. NR-A (212)	LR-E (1138) v. NR-A (497)
	LR-E (701) v. NR-A (212)	MR-A (#) v. NR-A (497)
	MR-A (1276) v. NR-A (212)	NR-A (497) v. NR-B (1096)
	NR-A (212) v. NR-B (1106)	NR-A (497) v. NR-C (1048)
	NR-A (212) v. NR-C (897)	

Note

indicates not enough data to calculate median

Examination of **Figures 3.2.2-1A**, **3.2.2-1B** and **3.2.321C** in **Section 3.2.2** above shows that the inner-quartile ranges for the sites pairs which are significantly different either have small overlap or no overlap. The broad distribution of specific conductance values for each of the dominant plant species among the study sites is especially noteworthy. There is also broad overlap in specific conductance ranges between cattail and Phragmites; above 500 μS/cm the specific conductance ranges for cattail and Phragmites both overlap with the specific conductance range for Spartina (undifferentiated). Similar to what Silvestri *et al.* (2005) posited in their study of Italian salt marshes, it appears that salinity alone is not a strong predictor of halophyte zonation in areas of the Scarborough Marsh that have been impacted by concentrated discharges of runoff. Although Phragmites is generally viewed as a colonizer of low-salinity regions in altered salt marsh systems, the specific conductance data presented here indicate that it can propagate into the higher salinity regimes dominated by *Spartina alterniflora* and *Spartina Patens*.

3.2.4 Relationship of Porewater Specific Conductance and Distance from Marsh Fringe in the Phragmites Study Sites

As explained in Silvestri *et al.* (2005), research has shown that soil salinity in the low-marsh region of unaltered coastal salt marshes gradually increases with marsh surface elevation (i.e., away from the tidal creek or river), reaching a maximum just above the mean high water (MHW) level near the outer limit of the low-marsh region. At higher elevations in the high-marsh, soil porewater salinity tends to decrease toward the marsh fringe due to progressively less frequent tidal flooding and a commensurate reduction in salt input.

In this section we explore whether this high-marsh salinity gradient (i.e., lower salinity near the marsh fringe progressing to higher salinities in the direction of the high-marsh/low-marsh boundary) is also present in areas dominated by Phragmites for both the source and offgradient transects.

Except for source transect DR-B which extends approximately 160 meters from the runoff source, we selected only survey points that are within 120 meters from the marsh fringe and considered only those survey points that were dominated by Phragmites or cattail for the linear regression analyses discussed below.

Table 3.2.4-1 lists the source transects and the associated off-gradient transects along with the horizontal distances separating both. The source and off-gradients transects used in the regression analyses are shown in Appendix C-1 as red lines on their respective site maps.

Figures C-2A through Figure C-2K in Appendix C are scatter plots of distance-from-marsh-fringe versus specific conductance for each transect along with pertinent linear regression data and p-value for level of statistical significance. We used Microsoft Excel to generate the scatterplots, trend lines, and linear regression equations shown in these figures and the Real-Statistics add-in for Excel to calculate the p-values for each transect. Results of the regression analyses used to calculate the p-values are presented in Appendix E. A p-value ≤ 0.05 is the benchmark to determine whether the regression trend-line projected through the data points for each transect yields a statistically significant linear relationship from which we can infer a specific conductance (salinity) gradient.

Source transect DR-A, its off-gradient transect T-1/DR-A, source transect DR-B, off-gradient transect LR-C and source transect MR-A are the only transects that show statistically significant ($p \le 0.05$) linear relationships between distance-from-marsh-fringe and specific conductance. However, the low R-squared value of 0.38 for transect DR-B indicates that the regression model shown in **Figure 3.2.4-1b** explains less than 40% of the variability between these two variables; therefore, we omitted it from further discussion in this section. We also omitted transect LR-C

from consideration because it appears unrepresentative of the broader local conditions since it is based on only three survey points covering a distance of 20 meters.

Runoff Source Transect	Off-gradient Transect	Estimated Distance (m) from Source Transect
DR-A	T-1/DR-A	230
DR-B	None associated	na
LR-A	LR-E	225
LR-D	LR-C & LR-E	185 & 270
NR-A	none associated	_
NR-B	NR-C	50 (15 m of this is road embankment)

Table 3.2.4-1 Source transects and their off-gradient counterparts

These regression results suggest that, depending on site macro- and micro-topography, stormwater discharge can affect the porewater salinities on the high-marsh over lateral distances on the order of 200 meters away from the runoff source³⁰ and cause irregular pooling of runoff on the marsh plain that may mask the characteristic high-marsh salinity gradient. This pooling notion appears consistent with relatively large dimensions of Phragmites stands relative to the associated stormwater point-sources at the study sites.

Positive slopes for regression lines for transects DR-A, T-1/DR-A and MR-A are consistent with a high-marsh salinity gradient, but source transects DR-A and MR-A have steeper regression line slopes (46.9 and 45.1, respectively) which suggest stronger salinity gradients compared to the slopes for off-gradient transect T-1/DR-A (slope = 13.7).

We used Microsoft Excel's *Slopestest* function to determine whether the regression lines for source transect DR-A and its off-gradient transect T-1/DR-A are statistically different. The analysis shows that DR-A and T-1/DR-A are significantly different (p = 0.00253), which is consistent with their regression line slopes differing by a factor of 3.4 and the notion that the salinity conditions of the source transect should be markedly different from its off-gradient transect 250 meters distant.

3.2.5 Marsh-Fringe Reference Sites

The principal objective of the marsh-fringe reference site (reference sites) surveys was to collect porewater specific conductance data near the marsh fringe in relatively unspoiled areas of the Scarborough Marsh (i.e., where evidence of excavation/erosion, invasive plants and concentrated stormwater discharge is absent) and compare these to the porewater data from

³⁰ Local macro- and micro-topography likely also affect the extent and configuration of these runoff-impacted areas.

the 11 stormwater-impacted study sites where Phragmites dominates the marsh fringe and the high-marsh.

Table 3.2.5-1 presents porewater specific conductance data for the 10 *Spartina patens* survey points at the reference sites. **Table 3.2.5-2** presents a summary of important descriptive statistics for specific conductance for these reference sites along with the same data for each dominant plant species encountered at the 11 Phragmites study sites. **Figure 3.2.5-1** is a boxplot of specific conductance for these same data.

Porewater specific conductance for the 10 *Spartina patens* reference survey points ranged between 1411 μ S/cm [8 ppt] and 2293 μ S/cm [14 ppt] with a mean of 1914 μ S/cm [12 ppt] and a median of 1963 μ S/cm [12 ppt]. According to the Shapiro-Wilks normality test these data are normally distributed.

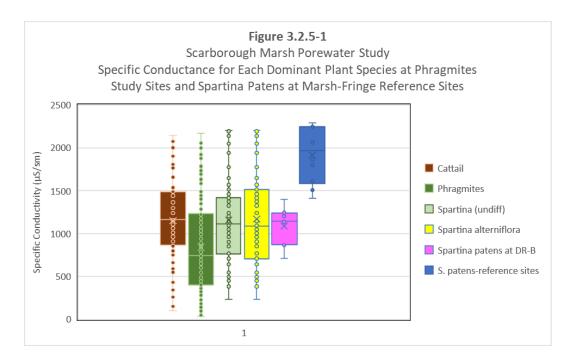

Comparison of these data for the reference sites to the data for dominant plant species from the 11 Phragmites study sites indicates that the mean and median porewater specific conductance are higher at the reference sites compared to Phragmites study site data for cattails, Phragmites, Spartina (undifferentiated), *Spartina patens* and *Spartina alterniflora*. Furthermore, the inner-quartile range for *Spartina patens* at the marsh-fringe reference sites brackets higher specific conductances compared to the inner-quartile range data for *Spartina patens* from Phragmites study site DR-B.

Table 3.2.5-1 Porewater specific conductance for *Spartina patens* at marsh-fringe reference sites

Survey Station		Distance from Marsh Fringe	Specific Conductance
(point)	Sub-Watershed	(meters)	(μS/cm)
14		6	1611
15	Dunstan River	4.5	1505
16		6	2060
21		9	1411
22	Nonesuch River	3	1802
24	Nonesuch River	1.5	2253
25		4	2247
26		1	1866
27	Libby River	1	2095
28		1	2293

Table 3.2.5-2 Summary statistics for the *Spartina patens* survey points in the marsh-fringe reference sites and each dominant plant species encountered at the stormwater-impacted Phragmites study sites. Specific conductance (μ S/cm) values are unbracketed; salinity [ppt] values are in brackets.

Category	No. of Points	Min-Max	Mean/Median	Normal Distribution
Cattails (Phragmites sites)	58	99-2146 [0-13]	1149/1161 [7/7]	Yes
Phragmites (Phragmites sites)	159	35-2169 [0-13]	842/744 [6/4]	No
Spartina (undifferentiated; Phragmites sites)	74	232-2203 [0-13]	1157/1115 [7/6]	No
S. alterniflora (Phragmites sites)	63	232–2203 [1-13]	1175/1090 [7/6]	No
S. patens (Phragmites sites)	12	712–1401 [4-8]	1063/1140 [6/7]	Yes
Marsh-fringe reference sites (S. patens)	10	1411-2293 [8-14]	1914/1963 [12/12]	Yes

Kruskal-Wallis Test results show a statistically significant difference ($p \le 0.05$) between the dominant plant porewater data from the Phragmites study sites and *Spartina patens* at the reference sites. Dunn's Test results show that the specific conductance data for the *Spartina patens* reference sites are significantly different (greater; p values ranging from 1.17E-07 to 2.76E-03) compared to the data for cattails, Phragmites and Spartina (including both subspecies) from the Phragmites study sites. **Table 3.2.5-3** summarizes this information. As shown in **Figure 3.2.5-1**, the inter-quartile ranges for the porewater data from the dominant plant species at Phragmites study sites do not overlap with inter-quartile range for the reference sites.

In summary, the marked differences between specific conductance data from the relatively unspoiled marsh-fringe reference sites and the 11 stormwater-impacted Phragmites study sites shows that concentrated stormwater influx onto the high-marsh plain significantly lowered porewater salinity beyond the Phragmites stands into the high-marsh region where native *Spartina patens* (site DR-B) and short-form *Spartina alterniflora* (at the other 10 sites) are present. With annual precipitation in Maine projected to increase on the order of 10 - 15% by the middle of the 21st century compared the late 20th century in conjunction with climate change (NCICS, 2022), existing stormwater loads discharged onto the marsh plain would also increase commensurately and exacerbate changes to the marsh ecology, including encroachment of invasive plants such as Phragmites.

Table 3.2.5-3 Summary of pairwise plant species specific conductance comparisons for the Phragmites study sites v. the marsh-fringe references sites using Dunn's Test

Comparison	Significant? P-value
Cattail v. S. patens (reference)	Yes; p = 7.68E-04
Phragmites v. S. patens (reference)	Yes; p = 1.17E-07
S. alterniflora v. S. patens (reference)	Yes; p = 5.82E-04
DR-B S. patens v. S. patens (reference)	Yes; p = 2.76E-03

4 SUMMARY

In early 2020, Friends of Scarborough Marsh (FOSM) approved funding for field research to characterize the salinity of groundwater and shallow soil porewater in several areas of the Scarborough Marsh where extensive Phragmites stands dominate the marsh vegetation and where stormwater conveyance structures such as ditches, culverts and pipes discharge runoff onto the marsh fringe and the high-marsh plain.

The goals of this study were threefold:

- Characterize the salinity of shallow groundwater below three dense Phragmites stands in the Dunstan River, Nonesuch River and Libby River sub-watersheds of the Scarborough Marsh which are downgradient from concentrated stormwater discharges.
- Use specific conductance of the shallow soil as a proxy for soil porewater salinity to
 evaluate the salinity distribution of the salt marsh soils in and around seven large
 Phragmites stands which are downgradient from concentrated stormwater sources
 in the Dunstan River, Nonesuch River and Libby River sub-watersheds. Three of
 these Phragmites stands were also part of the groundwater study.
- Evaluate the potential effects of stormwater discharge and subsequent growth of Phragmites on the positive salinity gradient observed by researchers between the high-marsh region of a healthy salt marsh and the high marsh/low-marsh boundary (i.e., salinity increases away from the marsh fringe toward the high-marsh/lowmarsh boundary).

4.1 Groundwater

Shallow groundwater samples collected from eight monitoring wells in August, September and October 2020 (three rounds of monitoring) had salinities ranging from 2 to 10 ppt.

4.2 Soil Porewater Salinity at the Phragmites Study Sites

Between November 2020 and June 2021, we measured porewater specific conductance and recorded the dominant marsh plant species data for 291 survey points at 11 Phragmites study sites in 7 Phragmites stands in the Dunstan River, Libby River and Nonesuch River subwatersheds. Based on these specific conductance data, porewater salinities for the entire study ranged from 0 ppt to 13 ppt with a mean and median of 6 ppt.

4.2.1 Sub-watershed Comparisons

Porewater salinities for the 92 survey points in the Dunstan River sub-watershed ranged between 0 ppt and 13 ppt with a mean and median of 6 ppt. Porewater salinities for the 121

survey points in the Libby River sub-watershed ranged between 0 ppt and 13 ppt with a mean and median of 6 ppt. Porewater salinities for the 78 survey points in the Nonesuch River subwatershed ranged between 0 ppt and 11 ppt with a mean and median of 5 ppt.

Statistical testing shows that specific conductance and salinity data for the Nonesuch River sub-watershed sites are significantly different (lower; $p \le 0.05$) compared to the Dunstan River and Libby River sub-watershed sites, whereas data from the Dunstan River and Libby River sub-watersheds are not significantly different.

4.2.2 Comparisons by Dominant Plant Species

The three dominant plant species encountered in the study sites were: narrow-leaf cattail (*Typha angustifolia*), Phragmites (*Phragmites ssp. australis*) and Spartina (both *Spartina pat*ens and short-form *Spartina alterniflora*). Porewater salinities for the 58 survey points dominated by cattails ranged between 0 ppt and 13 ppt with a mean and median of 7 ppt. Porewater salinities for the 159 survey points dominated by Phragmites ranged between 0 ppt and 13 ppt with a mean of 5 ppt and a median of 4 ppt. Porewater salinities for the 74 survey points dominated by Spartina ranged between 1 ppt and 13 ppt with a mean of 7 ppt and a median of 6 ppt.

Statistical testing shows that Phragmites specific conductance data are significantly different (lower; $p \le 0.05$) compared to the data for both cattails and Spartina, whereas porewater data for cattail and Spartina (undifferentiated) are not significantly different, suggesting that freshwater intrusion from sources such as stormwater conveyances is a factor in controlling the occurrence of Phragmites.

4.2.3 Study Site Comparisons (undifferentiated by plant species)

Statistical comparison of the specific conductance data among the 11 Phragmites study sites (ignoring dominant plant species) shows significant differences ($p \le 0.05$) for 24 site-site pairs. All study sites were significantly different from at least two other sites. On the low end, site DRA (in Dunstan River sub-watershed) is significantly different from only two sites, whereas on the upper end, site NR-A (in Nonesuch River sub-watershed) is significantly different (lower values) from six sites.

4.2.4 Study Site Comparisons (differentiated by plants species)

Within the same plant species, statistical pairwise site comparisons (10 sites with cattail data, 11 sites with Phragmites data and 10 sites with Spartina data) show significant differences ($p \le 0.05$) for 10 cattail site pairs, 18 Phragmites site pairs and 17 Spartina site pairs. The median specific conductance values for most of these significantly different site pairs generally differ by a factor of two or more.

Cattail Data – Specific conductance data for seven out of the ten sites with cattail data were significantly different from at least one site. On the high end, site DR-A is significantly different for four sites. Sites DR-B, LR-C and NR-C show no significant differences with any sites.

Phragmites Data – Specific conductance data for each of the 11 sites with Phragmites data were significantly different from at least one site. On the low end, sites MR-A and NR-C are significantly different from one site. On the high end, site NR-A is significantly different (has lower values) from nines sites.

Spartina (undifferentiated) Data – Specific conductance data for each of the tens sites with Spartina data were significantly different from at least one site. On the low end, sites LR-C and LR-D are significantly different from one site. On the high end, site NR-A is significantly different (has lower values) from 10 sites.

Other interesting observations include:

- The median specific conductance for short-form *Spartina alterniflora* adjacent to the Phragmites front at site DR-A is almost twice that of *Spartina patens* in the same relative position at site DR-B, suggesting that either runoff dilution of tidal flux is significantly greater for DR-B or that areas dominated by *Spartina alterniflora* at site DR-A are at lower elevations (i.e., subjected to more frequent tidal flooding) than areas dominated by *Spartina patens* at site DR-B.
- Median specific conductances for all three plant species at site NR-A are uniformly lower than those at NR-B, although both sites border the same small tributary creek to the Nonesuch River. This suggests that dilution of tidal flux with freshwater runoff is greater for site NR-A, that NR-A lies at higher elevations than NR-B (i.e., NR-A is inundated by tidal flow less frequently than NR-B), or both. Greater influx of runoff into site NR-A is plausible, considering that a freshwater wetland directly west of NR-A and stormwater from a half-mile section of Black Point Road both drain into site NR-A, whereas site NR-B receives runoff from a relatively short section of road ditch and the adjacent residential property (i.e., less runoff flows into NR-B).

4.2.5 Porewater Specific Conductance versus Distance-from-Marsh-Fringe

The salinity profile of the pore water in the high-marsh region of a healthy salt marsh typically shows a positive salinity gradient with salinity increasing away from the marsh fringe in the direction of the high-marsh/low-marsh boundary. Source transect DR-A, its off-gradient transect T-1/DR-A and source transect MR-A in the Dunstan River sub-watershed are the only transects that show strong, statistically significant ($p \le 0.05$) positive linear relationships

between distance-from-marsh-fringe and specific conductance (i.e., support a high-marsh salinity gradient).

4.2.6 Broad conclusions of the Phragmites porewater study

The three dominant plants species (cattail, Phragmites, Spartina) show broad overlap in porewater salinities. This suggests that while Phragmites may initially exploit low-salinity regions of the marsh fringe/high-marsh plain which have been impacted by tidal restrictions and/or influx of stormwater, after Phragmites becomes established, it can spread and flourish into high-salinity regimes normally dominated by native salt marsh plants such as short-form *Spartina alterniflora* and *Spartina patens*.

Chambers (1997) study of porewater chemistry in a Connecticut tidal marsh found Phragmites growing and flowering throughout a porewater salinity range from 12 to 30 ppt. Adams and Bate (1999) found Phragmites in a South African tidal marsh flooded by sea water with a salinity of 35 ppt. They and Burdick *et al.* (2001) suggest that Phragmites can tolerate surface waters high in salt, provided that the associated rhizosphere (the root system) receives freshwater dilution from groundwater originating from the surrounding uplands.

Based on six source transects at six study sites, specific conductance data for only two source transects (DR-A and MR-A) within the Phragmites-dominated areas showed statistically significant linear relationships that support a characteristic high-marsh salinity gradient with salinity increasing from the marsh fringe toward the high-marsh/low-marsh boundary.

We found no broad pattern in distribution of specific conductance values within the dense Phragmites stands (e.g., isosurfaces³¹) at the 11 Phragmites study sites, but this may be an artifact of the reconnaissance nature of this study. A denser sampling pattern (e.g., a survey array based on an orthogonal sampling grid (e.g., with 10 m by 10 m grid cells) of the impacted high-marsh plain would be necessary to assess the distribution of specific conductance/salinity within Phragmites stands in a more meaningful way.

4.3 Comparison to Unspoiled High-Marsh Regions of the Scarborough Marsh

Statistical comparison of porewater data from the Phragmites study sites and unspoiled marsh-fringe reference sites shows that porewater specific conductance and salinity data for *Spartina* patens at the reference sites are significantly different (higher) compared to the values measured for cattail, Phragmites and both Spartina subspecies at the Phragmites study sites.

³¹ Isosurface is a surface in 2- or 3-dimensional space that represents points of a constant value or a range of values (e.g., specific conductance, pressure, temperature, velocity, density) within a volume of space

In summary, the observations and conclusions of this study show that stormwater discharges to the salt marsh fringe and the high-marsh plain have adversely impacted the ecology of native salt-marsh plants over broad regions of the Scarborough Marsh and lowered marsh soil porewater salinities to levels that favor aggressive growth of invasive plants such as Phragmites. As development around the Scarborough Marsh continues to increase and Maine's projected annual precipitation increases because of climate change, this Phragmites problem will grow, eventually impacting a broader area of the marsh than the current estimate of 4.4% unless current stormwater management practices change for all developments and roadways proximal to the Scarborough Marsh.

5 RECOMMENDATIONS

5.1 Preliminary Recommendations for Municipal Stormwater Management

This study focused on seven Phragmites stands impacted by stormwater discharge out of the 111 large stands identified by Normandeau (2019). Preliminary examination of the locations of stormwater discharge structures in the Town of Scarborough using the Town's geographic information system (https://webapps2.cgis-solutions.com/scarboroughAdvanced/; drainage utilities layer) shows that large number of these large Phragmites stands occur adjacent to or downgradient from stormwater drainage structures such as culverts, road ditches and outfall pipes. A more comprehensive analysis of these Phragmites stands and nearby stormwater discharges will be necessary to determine how many Phragmites stands are potentially linked to stormwater discharges.

While eradication of existing Phragmites stands using conventional methods such as cutting and herbicide application has proven relatively ineffective on the Scarborough Marsh and elsewhere in North America, moving existing and future sources of stormwater discharge away from the marsh plain directly into the marsh creeks and rivers (e.g., using pipes or small ditches [runnels] cut into the marsh surface) may help limit the spread of large Phragmites stands beyond their current footprints. This strategy would likely require modifications to the Town's existing municipal stormwater discharge plan as well as a discharge permit(s) issued by the Maine Department of Environmental Protection (DEP) to discharge stormwater directly into the marsh rivers and creeks (i.e., into *Waters of the State*). FOSM proposes to begin discussions with the Town and DEP to explore the feasibility of implementing such a strategy. Where practical, another strategy could involve discharging stormwater onto permeable (e.g., sandy) upland soils for infiltration into groundwater using infiltration basins or shallow injection wells.

Increasing natural tidal flow by removing tidal restrictions to allow higher salinity waters to inundate areas compromised by stormwater and Phragmites growth is another strategy worth exploring. For example, increasing tidal flow north of the Eastern Trail and Route 1 would help raise the porewater and shallow groundwater salinities in study areas DR-A, DR-B and MR-A. Lowering the invert elevation of the three culverts draining the Libby River beneath Black Point Road to the elevation of the riverbed would allow the upper Libby River where study sites LR-A through LR-E are located to completely drain during the ebb tide, preventing upland freshwater drainage from pooling north of the road and diluting the salinity of the subsequent flood tide.

5.2 Recommendations for Additional Work

We offer two recommendations for future work to expand our understanding of the Phragmites/stormwater problem in the Scarborough Marsh.

- 1. Preliminary examination of the locations of stormwater discharge structures in the Town of Scarborough using the Town's geographic information system (GIS; https://webapps2.cgis-solutions.com/scarboroughAdvanced/— drainage utilities layer) shows that many of the large Phragmites stands mapped by Normandeau (2019) are adjacent to or downgradient from stormwater drainage structures (e.g., culverts, road ditches, outfall pipes). A more comprehensive analysis of the Town's stormwater discharges in relation to the locations of mapped Phragmites stands will be necessary to assess the potential impact of these stormwater structures on the Scarborough Marsh's current and future Phragmites problem. This assessment should include an engineering study to estimate the annual volume of stormwater that currently discharges to the marsh and projections for future discharges in anticipation of climate-change induced increases in Maine's annual precipitation.
- 2. A dense survey grid in one or more of the Phragmites stands studied for this project would be useful to study the distribution of porewater specific conductance/salinity further. More comprehensive porewater analyses (e.g., major cations and anions, dissolved oxygen and sulfur, nutrients and biochemical analytes related to plant/root respiration) and measurement of soil hydraulic conductivity at some of these sites would help advance theories regarding Phragmites propagation and its survival in high-salinity regimes.
- 3. The Phragmites stands evaluated in this study represent only a fraction of the Phragmites problem identified by Normandeau (2019). Moreover, data documenting the extent of stormwater impacts (i.e., reduction in porewater/root zone salinity) elsewhere in the marsh are lacking, as are data documenting the health of marsh plants elsewhere near the marsh fringe, and in the high-marsh and low-marsh regions of the Scarborough Marsh. We cannot fully assess the health of the marsh without these data and other data such as hydrologic monitoring and modeling. As an interim measure that focuses on plant ecology, we recommend using remote sensing techniques that rely on crop reflectance and/or other properties to: (1) map the key plant communities and their habitats throughout the marsh, (2) once mapped, identify areas in which these plants are stressed using both ground-based and remote-sensing techniques to understand the nature of the stress(es), and (3) develop a remote-sensing technique (with ground-truthing) to map the porewater salinity of the rooting zone throughout the marsh.

ACKNOWLEGEMENTS

Friends of Scarborough Marsh (FOSM) provided the funding to procure the equipment and supplies used for this project. Dr. Joseph Staples from the University of Southern Maine initially proposed using soil specific conductance to study Scarborough Marsh plant/salinity distributions for A. DeVecchis' UROP project. Methods and ideas generated from that project enabled us to conduct the Phragmites porewater study upon which much of this project is based. FOSM provided an intern stipend to A. DeVecchis to conduct the porewater survey field work.

We appreciate the comprehensive technical reviews of this report provided by Peter Slovinsky from the Maine Geologic Survey and Dr. Stephen Kahl from Thomas College.

REFERENCES

Adams, J. and G. Bate, 1999. Growth and photosynthetic performance of *Phragmites australis* in estuarine waters: A field and experimental approach. *Aquatic Botany*, Vol. 64, 359–367.

- Alaska Department of Transportation and Public Facilities, 2007. Alaska Guide to Description and Classification of Peat and Organic Soil. 9 pp.
- Bernal B., Megonigal J.P., and Mozdzer, T.J., 2017. An invasive wetland grass primes deep soil carbon pools. *Glob Chang Biology*, 2017 May; 23(5): 2104-2116. doi: 10.1111/gcb.13539. Epub 2016 Nov 17. PMID: 27779794.
- Bertram, C., Quass, M., Reusch, T.B.H., Vafeidis, A.T., Wolff, C. and Richels, N., 2021. Blue Carbon Wealth of Nations. Nature Climate Change, vol. 11, 704-709.
- Bigelow, D. and Borchers, A., 2017, Major Land Uses in the United States, 2012. USDA Economic Research Service. Accessed online November 2022. https://www.ers.usda.gov/publications/pub-details/?pubid=84879
- Binns, H. and Gordon, J., 2021. 11 Facts about salt marshes and why we need to protect them. The Pew Charitable Trusts. Accessed online Nov 2022.

 https://www.pewtrusts.org/en/research-and-analysis/articles/2021/03/01/11-facts-about-salt-marshes-and-why-we-need-to-protect-them#
- Burdick, D. M. and M. Dionne, 1994. Comparison of salt marsh restoration and creation techniques in promoting native vegetation and functional values. Office of State Planning, Concord, New Hampshire.
- Burdick, D.M, R. Buchsbaum, and E. Holt, 2001. Variation in soil salinity associated with expansion of *Phragmites australis* in salt marshes. *Environmental and Experimental Botany*, Vol. 46, 247–261
- Chambers, R.M., Osgood, D.T. Bart, D.J., and Montalto F., 2003. *Phragmites australis* invasion and expansion in tidal wetlands: interactions among salinity, sulfide, and hydrology. *Estuaries*, Vol. 26, 398-406.
- Chambers, R.M., 1997. Porewater chemistry associated with *Phragmites* and *Spartina* in a Connecticut tidal marsh. *Wetlands*, Vol. 7, No. 3, 360-367.
- Chmura, G., Anisfeld, S.C., Cahoon, D.R., and Lynch, J.C, 2003. Carbon Sequestration in Tidal Saline Wetland Soils. *Global Biogeochemical Cycles*, vol. 17, No. 17: doi:10.1029/2002GB001917, 2003.
- Geedicke, I., Oldeland, J., and Leishman, M.R., 2018. Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests. *Science of the Total Environment 637-638*, 137-144.
- Karber, J.M., Beattie, K.C., O'Dell, D.I., and Omand, K.A., 2015. Salinity Tolerance of Common Reed (*Phragmites australis*) at the Medouie Creek Restoration Site, Nantucket MA. *Wetland Science and Practice*, Vol. 32, No. 1. 19-23.

- Legualt, R, Zogg, GP and Travis, SE, 2018. Competitive interactions between native *Spartina alterniflora* and non-native *Phragmites australis* depend on nutrient loading and temperature. *PLOS ONE*, 12 pp., Accessed online Apr 2022. https://doi.org/10.1371/journal.pone.0192234
- Macreadie, P.I., Anton, Raven, J.A., Connelly, R.M., Friess, D.A., Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., Apostolaki, E.T., Atwood, T.B., Balddock, J., Bianchi, T.S., Chmura, G.L., Eyre, B.D., Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K.J., Megonigal, J.P., Murdiyarso, D., Rusell, B.D., Santos, R., Serrano, O., Silliman, B.R., Wantanabe, K., and Duarte, C.M., 2019. The Future of Carbon Science. *Nature Communications*, vol. 10, article no. 3998, 13 pp.
- Maine Geological Survey, 2019. Maine Highest Annual Tide Line 2015. Accessed online Apr 2018. https://mgs-maine.opendata.arcgis.com/datasets/maine-highest-annual-tide-line-2015
- Maine Geological Survey (MGS) and the Southern Maine Regional Planning Commission (SMRPC), 2010 [revised 2011], Sea Level Rise and Potential Impacts by the Year 2100: A Vulnerability Assessment for the Saco Bay Communities of Biddeford, Saco, Old Orchard Beach and Scarborough. 22 pp.
- Minchinton, T.E. and Bertness, M.D., 2003. Disturbance-mediated competition and spread of *Phragmites australis* in a coastal marsh. *Ecological Applications*, vol. 13, no. 5, 1400–1416.
- North Carolina Institute of Climate Studies (NCICS), 2022, State Climate Summaries, 2022, Maine. Accessed online Nov 2022. https://statesummaries.ncics.org/chapter/me/
- Normandeau Associates, Inc., 2019. Phragmites Mapping and Evaluation of Management Options Scarborough Marsh Maine. Report for Friends of Scarborough Marsh. 51 pp.
- Saltonstall, K, 2002. Cryptic invasion by a non-native genotype of the common reed, *Phragmites australis*, into North America. *PNAS*, vol. 99, no. 4, 2445-2449.
- Silvestri, S., Defina, A. and Maran, M., 2005. Tidal regime, salinity and salt marsh plant zonation. *Estuarine, Coastal and Shelf Science*, Vol. 62, 119–130.
- Slovinsky, P.A., 2014. An overview of potential marsh migration in response to sea level rise datasets created as part of Maine's NOAA Project of Special Merit. A presentation for the Northeast Regional Ocean Council (NROC) Marsh Migration and Policy Workshop, 120 slides.
- Underwood, Kirstin, 2019, Unpublished project report pertaining to Libby River salinity, hydrology and salt marsh plant transects. US Fish & Wildlife Service, 28 pp.

Von Post, L., 1921, Sveriges Geologiska Undersöknings Torvinventering Ocj Några Av dess Hittills Vunna Resultat. Svenska Mosskulturfor. Tidskrift, Vol. 36, 1921.

Yang, S.H., Liu, F., Song, X.D., Lua, Y.Y., Lia, D.,C., Zhao, Y.G., and Zhang, G.L., 2019. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China. *Ecological Indicators*, vol. 102, 252-264.

APPENDIX A - SCARBOROUGH MARSH RESTORATION PROJECTS (2003 TO 2013)

(Data compiled by Steve Pinette on 1/13/2022 from available reports and documents)

A-1. PROJECTS FOCUSED ON RESTORING HYDROLOGIC FUNTION (refer to Figure A.1 for location map)

Cascade Brook (2003; 88 acres affected)

Treatments: Removal of peat piles and road spoils deposited on marsh surface following 500-year storm in 1996; lowering of water control structure near Pine Point Road; removing berms or parts of berms upstream from water-control structure; herbicide treatment of Phragmites stands.

Results: The tidal hydroperiod and flooding depths increased; Phragmites monocultures were replaced with diverse plant growth; some Phragmites regrowth occurred.

Middle Nonesuch River (2006; 250 acres affected)

Treatments: Ditch plugging and berm removal

Results: Raised groundwater table; increased extent of tidal flooding and hydroperiod; retained water in existing permanent pools; trend toward development of desirable salt marsh plant community; decreased extent of Phragmites.

Mill Brook (2004; 14 acres affected)

Treatments: ditch-plugging to restore pool habitat to pre-ditch conditions; excavating a new ditch and clearing out two existing ditches to minimize freshwater pooling in the northern portion of the marsh; herbicide treatment of Phragmites stands.

Results: Substantial pool habitat restored; increased hydroperiod near ditch plugs; amount of Phragmites decreased.

Seavey Landing (2002; 25 acres affected)

Treatments: Plugging man-made ditches to restore hydrology to the marsh surface; excavation of shallow panne areas on the marsh surface to promote permanent pool habitat.

Results: Increased extent of permanent pools; raised groundwater table.

A-2. MAINE DEPARTMENT OF TRANSPORTATION BRIDGE & CULVERT PROJECTS

Route 1 Over Dunstan River (2004)

Treatment: Replaced undersized culverts with four 8-ft diameter culverts to improve tidal flooding and hydroperiod in upper Dunstan River marsh.

Results: Unknown; no follow-up study to document post-construction effects.

Black Point Road over Libby River (2006)

Treatment: Added two 72-inch diameter culverts to supplement existing 60-inch culvert to improved tidal flooding and recovery of native plant species in upper Libby River marsh. Results (1-year post-installation): Increased the tidal range (by 20%), hydroperiod and salinity upstream of Pine Point Road.

A-3. PHRAGMITES STANDS TREATED WITH HERBICIDES

Focused efforts targeting small areas

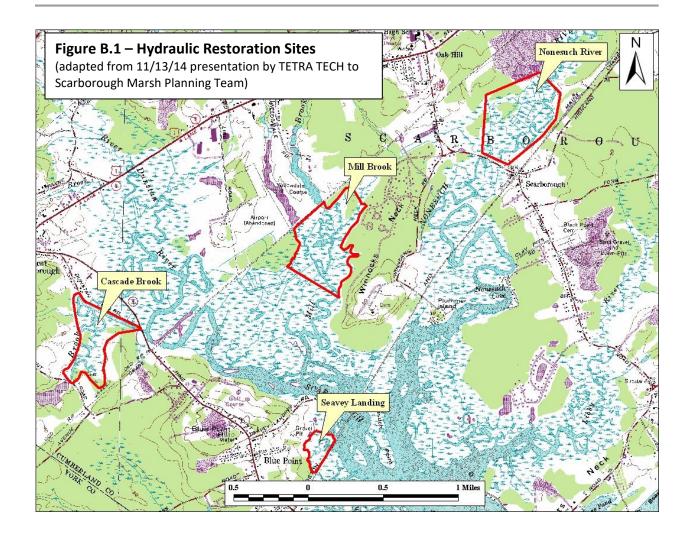
Cascade Brook

(2004): Phragmites treatment area unknown

Libby River

(2005): five Phragmites areas treated by NRCS

Mill Brook


(2004): 12 Phragmites patches treated

Larger scale efforts from 2010 to 2013 (total area treated = 98.5 acres)

Cascade Brook: 7.4 acres Dunstan River: 39 acres Jones Creek: 22 acres Libby River: 24 acres Mill Brook: 0.7 acres

Nonesuch River: 5.4 acres

Note: No follow-up study exists to document post-2013 treatment efficacies.

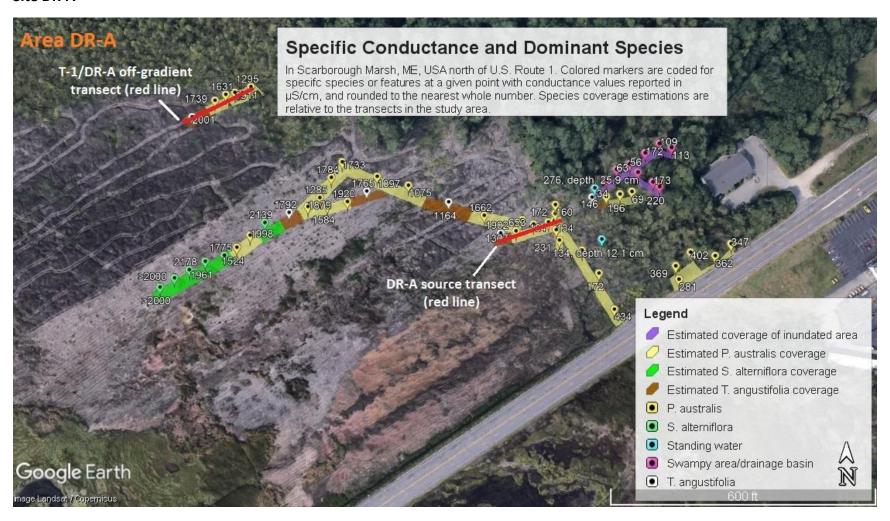
APPENDIX B - SOIL BORING LOGS AND MONITORING WELL DIAGRAMS

SOIL & MONITORING WELL LOG			Boring ID		DM-1			
Proj	ect Nam	e: FOAM Phragmites & Ground Water Salinity Study	Date (well installation)		8/15/2020			
Loca	ation: Du	nstan River Marsh	Total sampling depth		4.5 ft.			
FOS	M Rep:	S Pinette	Shallow Groun	Shallow Ground Water Depth 1.27 ft. (on 8/28/2020)				
				Monitoring Well Diagram		agram		
Depth (ft)	Sample interval (ft)	Description 5				B L A N K		
0		Fibric peat (medium yellow brown) containing plant and root fragments with subordinate						
		amounts (<25%) of dark yellow-brown amorphous humus and trace very fine				\		
1				∇		\		
		Hemic peat (dark yellow brown) containing greater than 50% amorphous hum	us with			1-/		
2		subordinate fibric material consisting of plant and root fragments; trace very fir			\			
		Fibric peat (dark yellow brown) in a matrix (+/-25%) of amorphorus humus						
3		Very fine sand (medium brownish gray) with trace of plant and root fragments. depth = 3.1'						
4		~Orange-brown mottles (staining) in lower 0.5', indicating periodic exposure to air~				\		
		Bottom of boring at 4.5 ft.				\ \		
5						\		
6						[\		
						\		
7						\		
8						\		

Notes: (1) Monitoring well consists of 3/4-inch diameter Schedule 40 PVC with the bottom 6 inches perforated with 8 x 1/8-inch drilled holes; a PVC end-cap is installed at the bottom of the monitoring well. (2) Strata boundaries are approximate. The following symbol depicts depth to ground ground water in the monitoring well on August 28, 2021:

SOIL & MONITORING WELL LOG			Boring ID	LR-1				
Project Name: FOAM Phragmites & Ground Water Salinity Study Date			Date (we	ell installation)	8/17/2020			
Location: Dunstan River Marsh Total sa			ampling depth	9.0 ft.				
FOSM Rep: S Pinette Shallow Grou			Shallow Ground	d Water Depth	0.4 ft. (on 8/28/2020)			
	t)			Monito	itoring Well Diagram			
Depth (ft)	Sample interval (ft)	Description			LR-1M	LR-1D		
0		Fibric peat (dark brown) containing plant and root fragments with subordinate amounts (<25%) of \to \to \to \to						
		amorphous humus and trace very fine sand.						
1								
_		[color is dark yellow-brown between approx.1.5 - 3.5 ft.]						
2								
3				depth = 3.0				
4		Fibric peat and humus (dark brown) interbedded? with silty very fine sand (li	ght gray)					
5		Fibric peat (dark yellow-brown) with amorphous humus matrix						
6		Organic silty very fine sand (dark olive gray) interbedded? with fibric peat conhumus matrix	ntaining amorphous		depth = 6.0'			
7								
0		Fibric peat (dark brown) with amorphous humus matrix; trace very fine sand	n 8 - 8.5' sample.			\neg		
8		Fibric peat (dark brown) with amorphous humus matrix interbeded? with mm-	scale dark					
9			gray silty v.fine sand			depth =9.1		
		Bottom of boring at 9.1 ft.	,,	ľ				
Notes: (1) Monitoring well consists of 3/4-inch diameter Schedule 40 PVC with the bottom 6 inches perforated with 8 x 1/8-inch drilled holes; a PVC end-cap is installed at the bottom of the monitoring well. (2) Strata boundaries are approximate. The following symbol depicts depth to ground water in the monitoring well on August 28, 2021:								

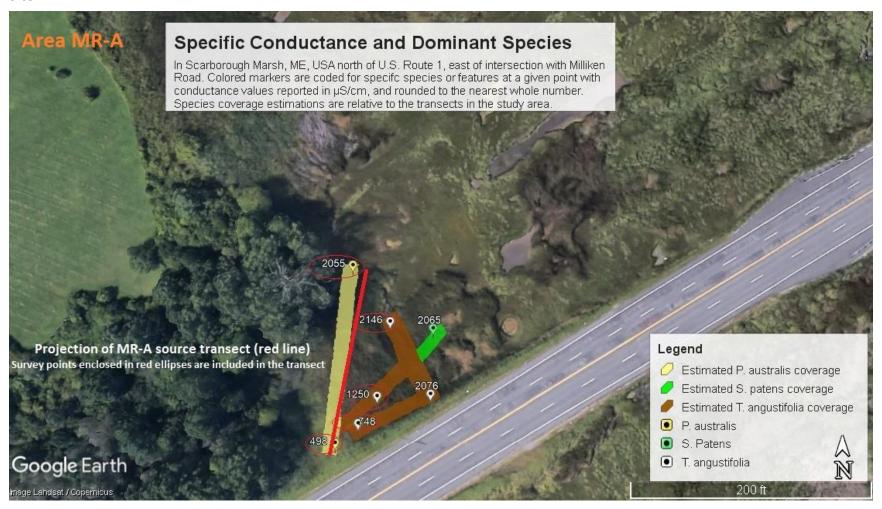
		SOIL & MONITORING WELL LOG		Boring ID	RJ-1	-
Proj	ect Nam	e: FOAM Phragmites & Ground Water Salinity Study	Date (we	ell installation)	8/12/2020	
Loca	ation: Du	nstan River Marsh		ampling depth	4.0 ft.	
FOS	M Rep: S	d Water Depth	0.2 ft. (on 8/	28/2020)		
				Monite	oring Well Dia	agram
(#)	Sample interval (ft)				В	
닱	mp val	Description	Description			
Depth (ft)	Sample nterval (ft	·		RJ-18	RJ-1M	A N
	Ë					K
0		Fibric peat (light yellow brown) consisting of undecomposed plant and root	s fragments with			1
		trace (<<5%) fine to medium sand in matrix	g			\
1						
		Hemic peat (dark brown) consisting of approx. equal portions fiber (plant/ro	ot frags) and			
2			humus matrix	/ depth = 2.0'		
		Very fine sand (medium brownish gray) with trace plant and root fragments	3		1	
3		[color changes to light brownish gray around 3 ft]			.!	I\
		Fibric peat (dark yellow-brown) with amorphous humus matrix (± 30%)			depth = 3.4'	
4		Bottom of boring at 4.0 ft.				
5						
\vdash						
6						\
7						
$\vdash \leftarrow$						
8						\ \
		Significant and the second of O/A inches Proceedings On head to AO DVO with the house	. 0'	1 - 11 - 0 - 4/0 1 -		- D) (O I

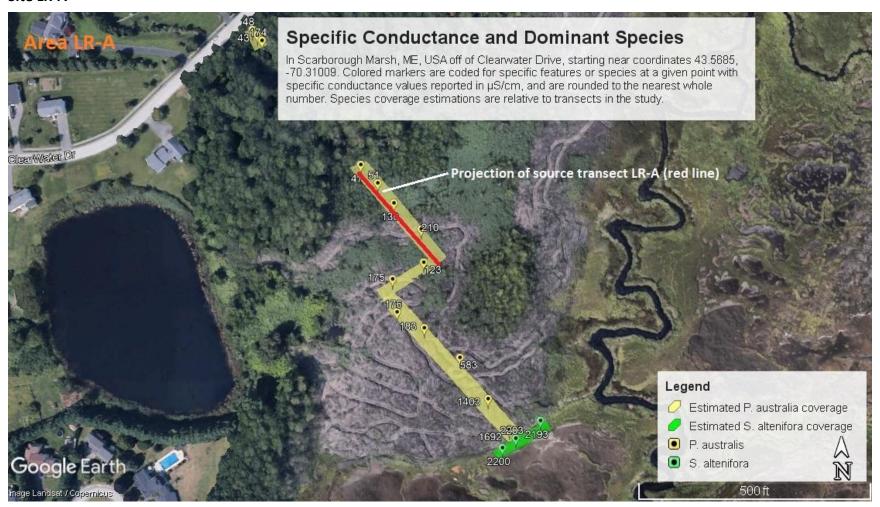

Notes: (1) Monitoring well consists of 3/4-inch diameter Schedule 40 PVC with the bottom 6 inches perforated with 8 x 1/8-inch drilled holes; a PVC end-cap is installed at the bottom of the monitoring well. (2) Strata boundaries are approximate. The following symbol depicts depth to ground water in the monitoring well on August 28, 2021:

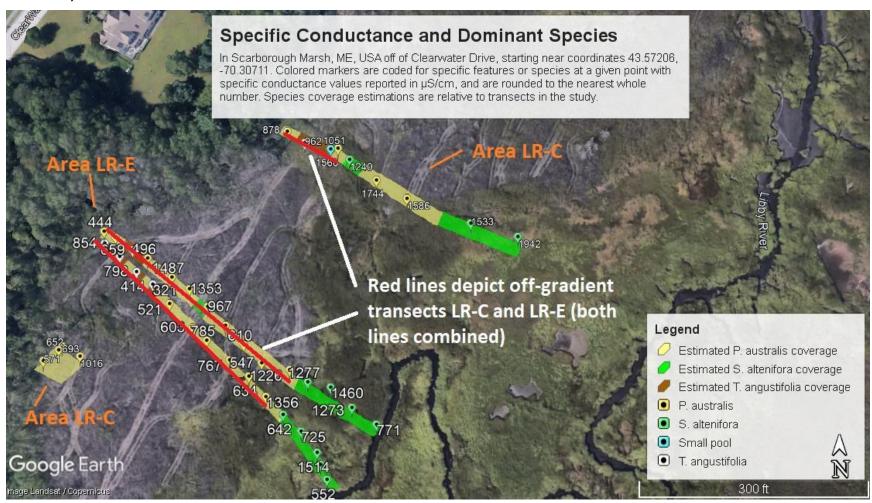
APPENDIX C - POREWATER SITE LOCATION MAPS AND MARSH-FRINGE DATA PLOTS

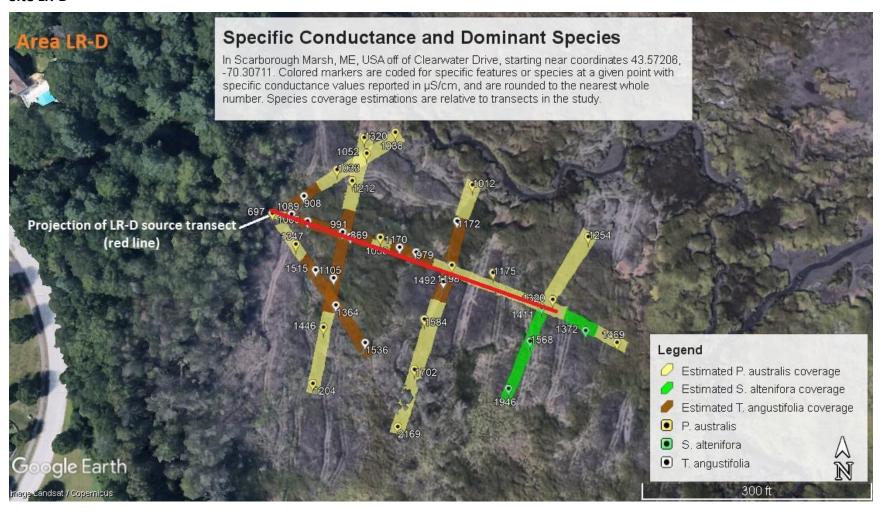
- C-1 Location Maps for Porewater Study Sites
- C-2 Scatter Plots of Distance-from-Marsh-Fringe versus Porewater Specific Conductance

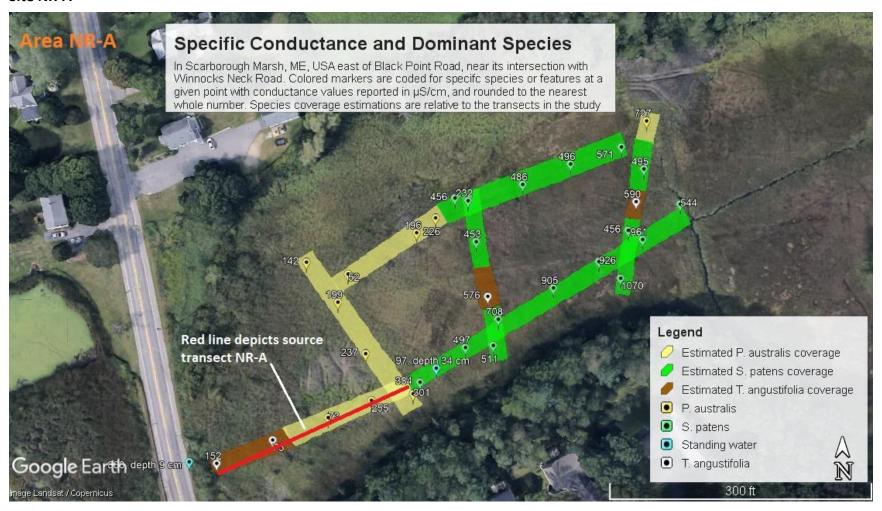
Appendix C-1. Location Maps for Porewater Study Sites

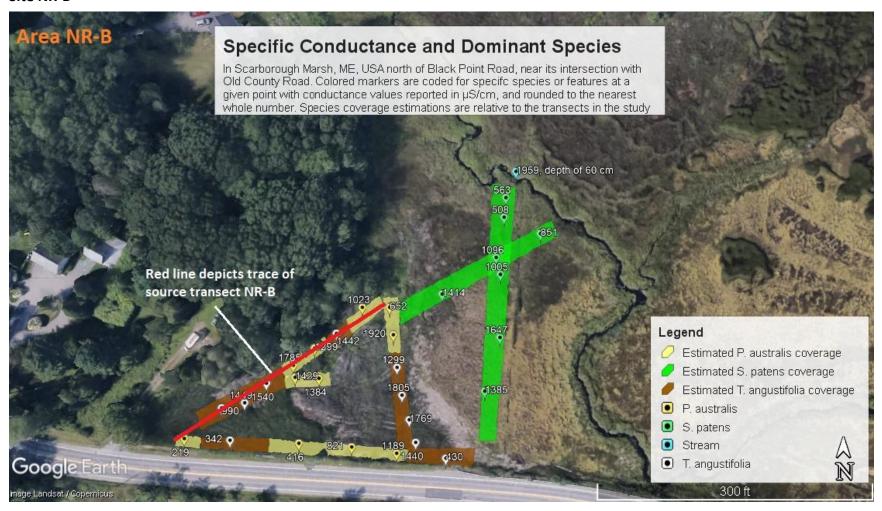

Site DR-A

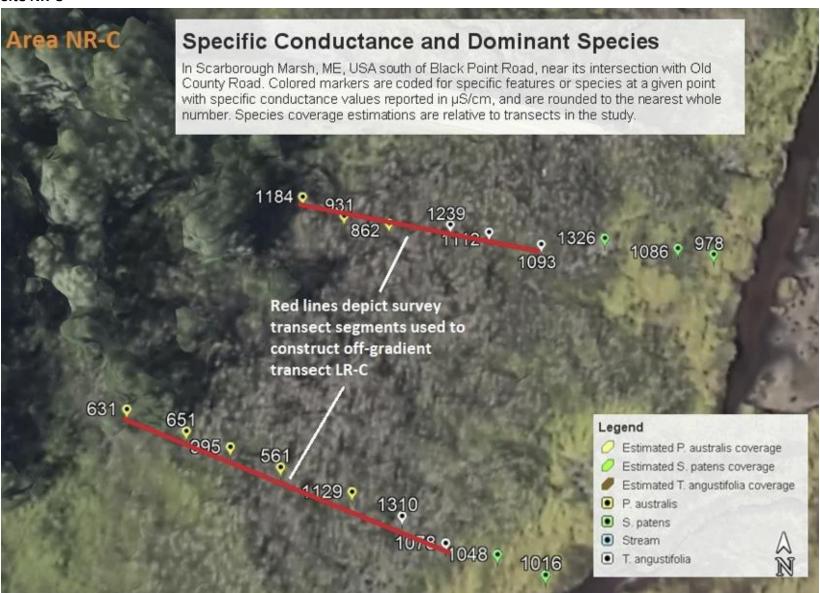

Site DR-B

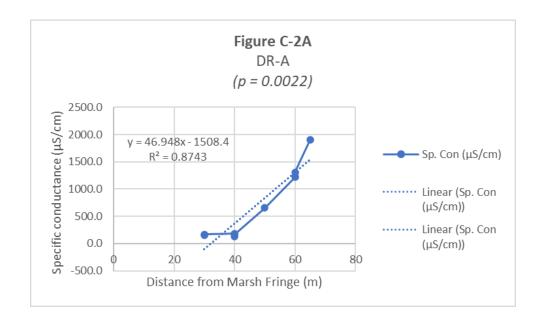

Site MR-A

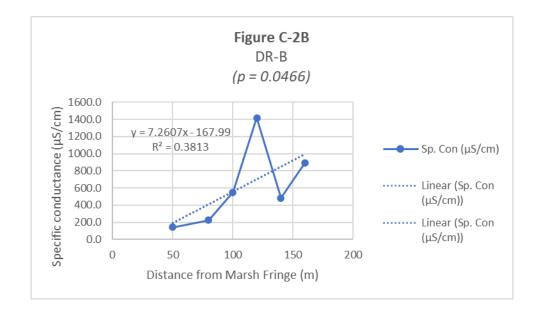

Site LR-A

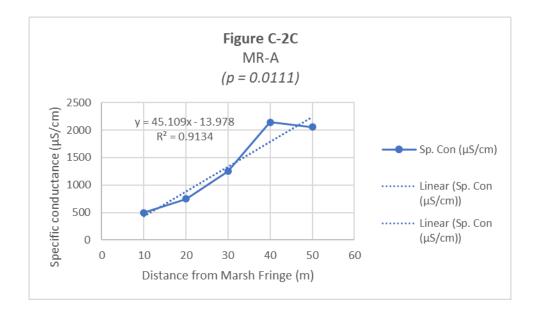

Sites LR-B, LR-C and LR-E

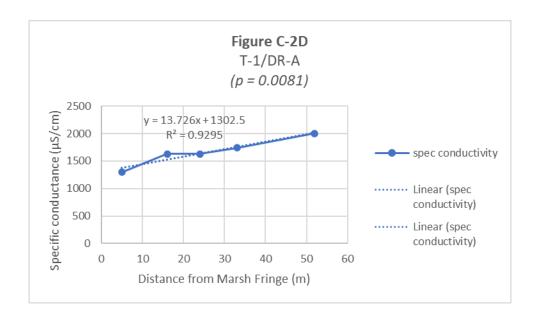

Site LR-D

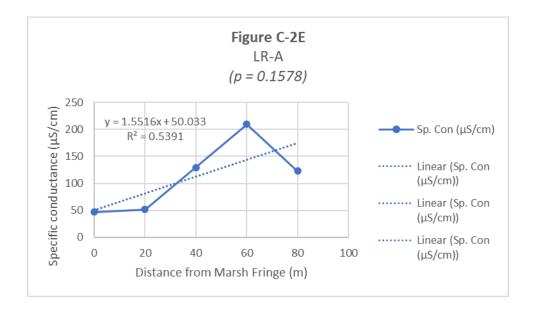

Site NR-A

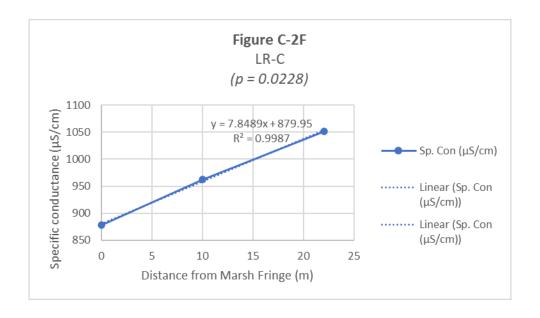

Site NR-B

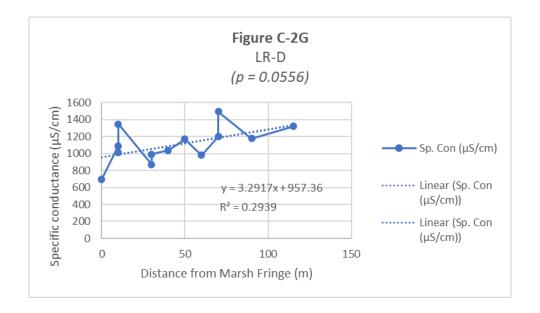


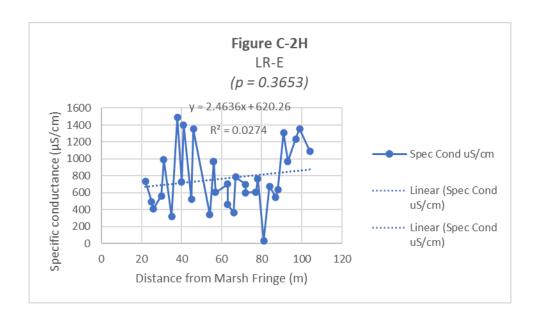

Site NR-C

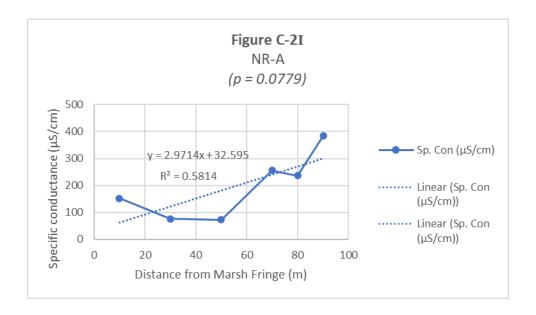


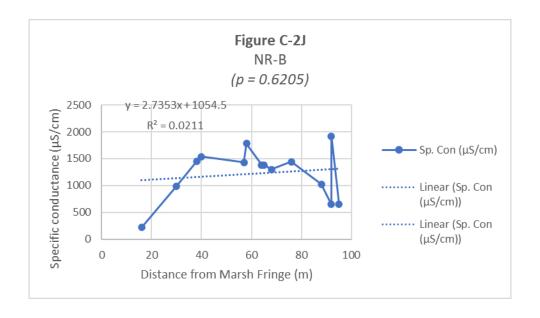

Appendix C-2. Plots of Distance-from-Marsh-Fringe versus Porewater Specific Conductance

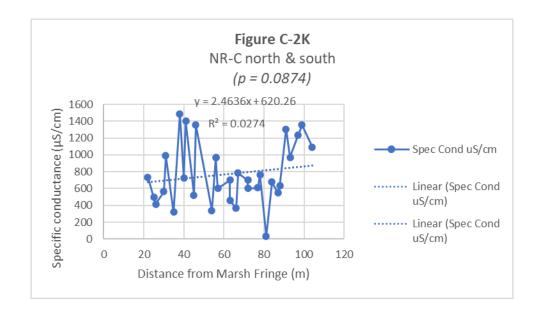












APPENDIX D - SPECIFIC CONDUCTANCE DATA FOR POREWATER SURVEY POINTS

Phragmites Study Sites

Data sorted by area, then by survey point									
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (μs/cm)	Dominant Plant Type					
142	DR-A	5/18/2021	69	Phrag					
143	DR-A	5/18/2021	196	Phrag					
144	DR-A	5/18/2021	146	Phrag					
146	DR-A	5/18/2021	99	Cattail					
153	DR-A	5/19/2021	281	Phrag					
154	DR-A	5/19/2021	369	Phrag					
155	DR-A	5/19/2021	402	Phrag					
156	DR-A	5/19/2021	362	Phrag					
157	DR-A	5/19/2021	347	Phrag					
311	DR-A	6/24/2021	134	Phrag					
312	DR-A	6/29/2021	2,076	Spartina					
313	DR-A	6/29/2021	2,050	Spartina					
314	DR-A	6/29/2021	2,178	Spartina					
315	DR-A	6/29/2021	1,961	Spartina					
316	DR-A	6/29/2021	1,775	Spartina					
317	DR-A	6/29/2021	1,524	Phrag					
318	DR-A	6/29/2021	1,998	Phrag					
319	DR-A	6/29/2021	2,139	Spartina					
320	DR-A	6/29/2021	1,792	Cattail					
321	DR-A	6/29/2021	1,879	Phrag					
322	DR-A	6/29/2021	1,285	Phrag					
323	DR-A	6/29/2021	1,784	Phrag					
324	DR-A	6/29/2021	1,733	Phrag					
325	DR-A	6/29/2021	1,584	Phrag					
326	DR-A	6/29/2021	1,920	Phrag					
327	DR-A	6/29/2021	1,765	Cattail					
328	DR-A	6/29/2021	1,097	Phrag					
329	DR-A	6/29/2021	1,075	Phrag					
330	DR-A	6/29/2021	1,164	Cattail					
331	DR-A	6/29/2021	1,662	Phrag					
332	DR-A	6/29/2021	1,220	Phrag					
333	DR-A	6/29/2021	184	Phrag					
334	DR-A	6/29/2021	97	Phrag					
335	DR-A	6/29/2021	172	Phrag					
336	DR-A	6/29/2021	434	Phrag					
337	DR-A	6/30/2021	1,295	Phrag					

Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (µs/cm)	Dominant Plant Type
338	DR-A	6/30/2021	1,911	Phrag Phrag Phrag Phrag Cattail Phrag Spartina Spartina Spartina
339	DR-A	6/30/2021	1,631	
340	DR-A	6/30/2021	1,739	
341	DR-A	6/30/2021	2,001	
342	DR-A	6/30/2021	231	
343	DR-A	6/30/2021	134	
344	DR-A	6/30/2021	160	
345	DR-A	6/30/2021	172	_
347	DR-A	6/30/2021	1,902	
348	DR-A	6/30/2021	1,307	Phrag
349	DR-A	6/30/2021	653	
350	DR-A	6/30/2021	176	
48	DR-B	3/12/2021	452	
49	DR-B	3/12/2021	844	
51	DR-B	3/12/2021	744	
52	DR-B	3/12/2021	723	
54	DR-B	3/12/2021	511	
118	DR-B	5/11/2021	226	
119	DR-B	5/11/2021	550	
121	DR-B	5/11/2021	1,418	Phrag
122	DR-B	5/12/2021	485	
123	DR-B	5/12/2021	892	
124	DR-B	5/12/2021	911	
125	DR-B	5/12/2021	746	Phrag
126	DR-B	5/12/2021	751	
127	DR-B	5/12/2021	864	
128	DR-B	5/12/2021	871	
129	DR-B	5/12/2021	1,200	
130	DR-B	5/12/2021	1,401	Spartina
131	DR-B	5/17/2021	717	Phrag
132	DR-B	5/17/2021	1,159	Cattail
133	DR-B	5/17/2021	1,489	Cattail
134	DR-B	5/18/2021	1,656	Cattail
135	DR-B	5/18/2021	1,460	Cattail
136	DR-B	5/18/2021	1,253	Cattail
137	DR-B	5/18/2021	1,243	Spartina
138	DR-B	5/18/2021	142	Phrag
159	DR-B	5/19/2021	1,227	Spartina
160	DR-B	5/19/2021	941	Phrag
161	DR-B	5/19/2021	1,146	Spartina
162	DR-B	5/19/2021	1,064	Cattail

163	DR-B	5/19/2021	1,025	Phrag
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (µs/cm)	Dominant Plant Type
164	DR-B	5/19/2021	1,249	Spartina
165	DR-B	5/19/2021	1,187	Phrag
166	DR-B	5/19/2021	1,015	Phrag
167	DR-B	5/19/2021	1,135	Spartina
168	DR-B	5/19/2021	904	Spartina
169	DR-B	5/19/2021	712	Spartina
170	DR-B	5/19/2021	800	Spartina
297	LR-A	6/20/2021	47	Phrag
298	LR-A	6/20/2021	51	Phrag
299	LR-A	6/20/2021	130	Phrag
300	LR-A	6/20/2021	210	Phrag
301	LR-A	6/20/2021	123	Phrag
302	LR-A	6/20/2021	175	Cattail
303	LR-A	6/20/2021	176	Phrag
304	LR-A	6/20/2021	183	Phrag
305	LR-A	6/20/2021	583	Phrag
306	LR-A	6/20/2021	1,403	Phrag
307	LR-A	6/20/2021	1,693	Phrag
308	LR-A	6/20/2021	2,203	Spartina
309	LR-A	6/20/2021	2,193	Spartina
310	LR-A	6/20/2021	2,200	Spartina
293	LR-B	6/20/2021	652	Phrag
293	LR-B	6/20/2021	652	Phrag
294	LR-B	6/20/2021	693	Phrag
294	LR-B	6/20/2021	693	Phrag
295	LR-B	6/20/2021	1,016	Phrag
295	LR-B	6/20/2021	1,016	Phrag
296	LR-B	6/20/2021	571	Phrag
296	LR-B	6/20/2021	571	Phrag
246	LR-C	6/9/2021	878	Phrag
247	LR-C	6/9/2021	962	Cattail
248	LR-C	6/9/2021	1,568	Cattail
249	LR-C	6/9/2021	1,051	Phrag
250	LR-C	6/9/2021	1,240	Spartina
251	LR-C	6/9/2021	1,745	Phrag
252	LR-C	6/9/2021	1,586	Phrag
253	LR-C	6/9/2021	1,533	Spartina
254	LR-C	6/9/2021	1,942	Spartina
256	LR-D	6/11/2021	697	Phrag
257	LR-D	6/11/2021	1,089	Cattail

258	LR-D	6/11/2021	1,009	Cattail
259	LR-D	6/11/2021	869	Cattail
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (µs/cm)	Dominant Plant Type
260	LR-D	6/11/2021	1,036	Phrag
261	LR-D	6/11/2021	1,170	Cattail
262	LR-D	6/11/2021	979	Cattail
263	LR-D	6/11/2021	1,198	Phrag
264	LR-D	6/11/2021	1,175	Phrag
265	LR-D	6/11/2021	1,411	Spartina
266	LR-D	6/11/2021	1,372	Spartina
267	LR-D	6/11/2021	1,469	Phrag
268	LR-D	6/11/2021	1,254	Phrag
269	LR-D	6/11/2021	1,320	Phrag
270	LR-D	6/11/2021	1,568	Spartina
271	LR-D	6/11/2021	1,946	Spartina
272	LR-D	6/17/2021	1,013	Phrag
273	LR-D	6/17/2021	1,172	Cattail
274	LR-D	6/17/2021	1,492	Cattail
275	LR-D	6/17/2021	1,584	Phrag
276	LR-D	6/17/2021	1,702	Phrag
277	LR-D	6/17/2021	2,169	Phrag
278	LR-D	6/18/2021	1,320	Phrag
279	LR-D	6/18/2021	1,212	Phrag
280	LR-D	6/18/2021	991	Cattail
281	LR-D	6/18/2021	1,105	Cattail
282	LR-D	6/18/2021	1,446	Phrag
283	LR-D	6/18/2021	1,204	Phrag
284	LR-D	6/18/2021	908	Cattail
285	LR-D	6/18/2021	1,033	Phrag
288	LR-D	6/18/2021	1,038	Phrag
289	LR-D	6/20/2021	1,347	Phrag
290	LR-D	6/20/2021	1,515	Cattail
291	LR-D	6/20/2021	1,364	Cattail
292	LR-D	6/20/2021	1,536	Cattail
286/287	LR-D	6/18/2021	1,052	Phrag
117	LR-E	4/18/2021	854	Cattail
43	LR-E	1/15/2021	258	Cattail
116	LR-E	4/18/2021	1,188	Cattail
No B297ID	LR-E	4/18/2021	798	Cattail
42	LR-E	1/15/2021	659	Cattail
45	LR-E	1/15/2021	444	Phrag
115	LR-E	4/18/2021	736	Phrag

114	LR-E	4/18/2021	414	Phrag
41	LR-E	1/15/2021	496	Phrag
113	LR-E	4/18/2021	565	Phrag
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (µs/cm)	Dominant Plant Type
40	LR-E	1/15/2021	991	Phrag
112	LR-E	4/18/2021	321	Phrag
111	LR-E	4/18/2021	727	Phrag
39	LR-E	11/21/2020	1,487	Phrag
38	LR-E	11/21/2020	1,402	Phrag
110	LR-E	4/18/2021	521	Phrag
37	LR-E	11/21/2020	1,353	Phrag
109	LR-E	4/18/2021	339	Phrag
No ID	LR-E	4/18/2021	967	Phrag
108	LR-E	4/18/2021	603	Phrag
107	LR-E	4/18/2021	702	Phrag
106	LR-E	4/18/2021	785	Phrag
105	LR-E	4/18/2021	701	Phrag
104	LR-E	4/18/2021	767	Phrag
103	LR-E	4/18/2021	676	Phrag
102	LR-E	4/18/2021	634	Phrag
101	LR-E	4/18/2021	972	Phrag
100	LR-E	4/18/2021	1,356	Phrag
99	LR-E	11/21/2020	1,092	Phrag
34	LR-E	11/21/2020	967	Phrag
33	LR-E	11/21/2020	460	Phrag
32	LR-E	11/21/2020	366	Phrag
31	LR-E	11/21/2020	602	Phrag
30	LR-E	11/21/2020	610	Phrag
29	LR-E	11/21/2020	35	Phrag
28	LR-E	11/21/2020	547	Phrag
27	LR-E	11/21/2020	1,306	Phrag
26	LR-E	11/21/2020	1,236	Phrag
98	LR-E	4/18/2021	642	Spartina
97	LR-E	4/18/2021	861	Spartina
96	LR-E	4/18/2021	725	Spartina
95	LR-E	4/18/2021	975	Spartina
94	LR-E	4/18/2021	1,514	Spartina
93	LR-E	4/18/2021	1,342	Spartina
92	LR-E	4/18/2021	552	Spartina
35	LR-E	11/21/2020	1,332	Spartina
25	LR-E	11/21/2020	1,082	Spartina
24	LR-E	11/21/2020	1,277	Spartina

23	LR-E	11/21/2020	1,426	Spartina
22	LR-E	11/21/2020	1,460	Spartina
21	LR-E	11/21/2020	1,142	Spartina
20	LR-E	11/21/2020	1,273	Spartina
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (µs/cm)	Dominant Plant Type
19	LR-E	11/21/2020	1,134	Spartina
18	LR-E	11/21/2020	771	Spartina
240	MR-A	6/7/2021	748	Cattail
241	MR-A	6/7/2021	1,250	Cattail
243	MR-A	6/7/2021	2,076	Cattail
244	MR-A	6/7/2021	2,146	Cattail
239	MR-A	6/7/2021	498	Phrag
245	MR-A	6/7/2021	2,055	Phrag
242	MR-A	6/7/2021	2,065	Spartina
202	NR-A	6/2/2021	860	Cattail
203	NR-A	6/2/2021	152	Cattail
220	NR-A	6/2/2021	576	Cattail
225	NR-A	6/4/2021	590	Cattail
205	NR-A	6/2/2021	73	Phrag
206	NR-A	6/2/2021	255	Phrag
215	NR-A	6/2/2021	301	Phrag
216	NR-A	6/2/2021	237	Phrag
217	NR-A	6/2/2021	199	Phrag
218	NR-A	6/2/2021	142	Phrag
227	NR-A	6/4/2021	727	Phrag
232	NR-A	6/4/2021	226	Phrag
233	NR-A	6/4/2021	196	Phrag
234	NR-A	6/4/2021	52	Phrag
207	NR-A	6/2/2021	384	Spartina
208	NR-A	6/2/2021	497	Spartina
209	NR-A	6/2/2021	708	Spartina
211	NR-A	6/2/2021	905	Spartina
212	NR-A	6/2/2021	926	Spartina
213	NR-A	6/2/2021	961	Spartina
214	NR-A	6/2/2021	544	Spartina
219	NR-A	6/2/2021	511	Spartina
221	NR-A	6/2/2021	453	Spartina
222	NR-A	6/2/2021	456	Spartina
223	NR-A	6/4/2021	1,070	Spartina
224	NR-A	6/4/2021	456	Spartina
226	NR-A	6/4/2021	495	Spartina
228	NR-A	6/4/2021	571	Spartina

229	NR-A	6/4/2021	496	Spartina
230	NR-A	6/4/2021	486	Spartina
231	NR-A	6/4/2021	232	Spartina
171	NR-B	5/26/2021	1,440	Cattail
172	NR-B	5/26/2021	1,769	Cattail
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (μs/cm)	Dominant Plant Type
173	NR-B	5/26/2021	1,805	Cattail
174	NR-B	5/26/2021	1,299	Cattail
178	NR-B	5/26/2021	1,442	Cattail
183	NR-B	5/26/2021	1,540	Cattail
184	NR-B	5/26/2021	1,449	Cattail
185	NR-B	5/26/2021	990	Cattail
189	NR-B	5/26/2021	430	Cattail
193	NR-B	5/26/2021	342	Cattail
175	NR-B	5/26/2021	1,920	Phrag
176	NR-B	5/26/2021	652	Phrag
177	NR-B	5/26/2021	1,023	Phrag
179	NR-B	5/26/2021	1,299	Phrag
180	NR-B	5/26/2021	1,785	Phrag
181	NR-B	5/26/2021	1,429	Phrag
182	NR-B	5/26/2021	1,384	Phrag
190	NR-B	5/26/2021	1,189	Phrag
191	NR-B	5/26/2021	821	Phrag
192	NR-B	5/26/2021	416	Phrag
194	NR-B	5/26/2021	219	Phrag
195	NR-B	5/28/2021	552	Phrag
186	NR-B	5/26/2021	1,414	Spartina
187	NR-B	5/26/2021	1,096	Spartina
188	NR-B	5/26/2021	851	Spartina
196	NR-B	5/28/2021	1,385	Spartina
197	NR-B	5/28/2021	1,647	Spartina
198	NR-B	5/28/2021	1,005	Spartina
199	NR-B	5/28/2021	508	Spartina
69	NR-C north transect	4/9/2021	1,239	Cattail
68	NR-C north transect	4/9/2021	1,112	Cattail
67	NR-C north transect	4/9/2021	1,093	Cattail
72	NR-C north transect	4/9/2021	1,184	Phrag
71	NR-C north transect	4/9/2021	931	Phrag
70	NR-C north transect	4/9/2021	862	Phrag
66	NR-C north transect	4/9/2021	1,326	Spartina
	NR-C north transect	4/9/2021	1,086	Spartina
65	ואת-כווטו נוו נומווזפניו	4/9/2017		

85	NR-C south transect	4/11/2021	1,310	Cattail
84	NR-C south transect	4/11/2021	1,078	Cattail
90	NR-C south transect	4/11/2021	631	Phrag
89	NR-C south transect	4/11/2021	651	Phrag
88	NR-C south transect	4/11/2021	995	Phrag
87	NR-C south transect	4/11/2021	561	Phrag
		•		Ü
Survey Point (Phragmites study)	Study Site	Survey Date	Specific Conductance (μs/cm)	Dominant Plant Type
•	Study Site NR-C south transect	Survey Date 4/11/2021	Conductance	Dominant Plant
(Phragmites study)	,	•	Conductance (μs/cm)	Dominant Plant Type

Total count 291

Marsh-Fringe Reference Sites

Survey Point (Reference Site)	Study Site (sub-watershed)	Survey Date	Specific Conductance (μs/cm)	Dominant Plant Type
14		6/30/2022	1611	Spartina patens
15	Dunstan River	6/30/2022	1505	Spartina patens
16		6/30/2022	2060	Spartina patens
21		7/5/2022	1411	Spartina patens
22	Nonesuch River	7/5/2022	1802	Spartina patens
24	Nonesuch River	7/5/2022	2253	Spartina patens
25		7/5/2022	2247	Spartina patens
26	26 7/5/2022 1866		1866	Spartina patens
27	Libby River	7/5/2022	2095	Spartina patens
28		7/5/2022	2293	Spartina patens

Total Count 10

APPENDIX E - STATISTICAL DATA

- E-1. Statistical Data for Phragmites Study
- **E-2.** Statistical Data for Marsh-Fringe Reference Sites

Appendix E-1. Summary Statistics for the Phragmites Porewater Study Sites

Ва	sic Stats for Cat	Basic Stats for Cattails_Entire Study		Basi	c Stats for Phra	gmites_Entire S	tudy	Ва	sic Stats for Spa	rtina_Entire Stu	ıdy	Basic Stats	_All Plants_Eni	tire Study	
		Shapiro-\	Wilk Test			Shapiro-V	Vilk Test			Shapiro-\	Vilk Test			Shapiro-\	Wilk Test
	Group 1		Group 1		Group 1		Group 1		Group 1		Group 1		Group 1		Group 1
Mean	1149	W-stat	0.983637	Mean	842	W-stat	0.95942	Mean	1157.071	W-stat	0.95136	Mean	984	W-stat	0.976814
Standard I	64	p-value	0.621865	Standard I	42.38265	p-value	0.000135	Standard I	60.43825	p-value	0.006373	Standard I	31.78121	p-value	0.000116
Median	1161	alpha	0.05	Median	744	alpha	0.05	Median	1114.852	alpha	0.05	Median	991	alpha	0.05
Mode	#N/A	normal	yes	Mode	651.6839	normal	no	Mode	#N/A	normal	no	Mode	651.6839	normal	no
Standard I	484.6927			Standard I	534.4249			Standard I	519.9095			Standard I	542.1469		
Sample Va	234927	d'Agostir	no-Pearson	Sample Va	285609.9	d'Agostin	o-Pearson	Sample Va	270305.9	d'Agostir	o-Pearson	Sample Va	293923.2	d'Agostir	no-Pearson
Kurtosis	-0.22			Kurtosis	-0.7522			Kurtosis	-0.54833			Kurtosis	-0.66483		
Skewness	-0.18968	DA-stat	0.43693	Skewness	0.385845	DA-stat	12.93136	Skewness	0.44683	DA-stat	3.925366	Skewness	0.228253	DA-stat	14.33991
Range	2047	p-value	1	Range	2134.261	p-value	0.001556	Range	1970.302	p-value	0.140481	Range	2167.719	p-value	0.000769
Maximum	2146	alpha	0.05	Maximum	2169	alpha	0.05	Maximum	2202.719	alpha	0.05	Maximum	2203	alpha	0.05
Minimum	99	normal	yes	Minimum	35	normal	no	Minimum	232.4176	normal	yes	Minimum	35	normal	no
Sum	66660			Sum	133946			Sum	85623.26			Sum	286229		
Count	58			Count	159			Count	74			Count	291		
Geometri	998.7332			Geometri	625.4731			Geometri	1034.882			Geometri	780.4177		
Harmonic	747.1619			Harmonic	373.2942			Harmonic	906.3774			Harmonic	497.2589		
AAD	376.9236			AAD	451.5748			AAD	415.8301			AAD	445.9233		
MAD	300.0855			MAD	439.5992			MAD	313.141			MAD	409.9174		
IQR	603.2032			IQR	820.1396			IQR	635.4345			IQR	793.3731		

STATS FOR	R SPARTIN <i>A</i>	ALTERNIF	LORA			STATS FOR	SPARTINA	APATTENS			
			Shapiro-W	/ilk Test					Shapiro-W	/ilk Test	
	Group 1			Group 1			Group 1			Group 1	
Mean	1175.348		W-stat	0.943505		Mean	1063		W-stat	0.918083	
Standard I	71.01249		p-value	0.006573		Standard I	64		p-value	0.27043	
Median	1090.852		alpha	0.05		Median	1140		alpha	0.05	
Mode	#N/A		normal	no		Mode	#N/A		normal	yes	
Standard [559.1529					Standard I	220.0903				
Sample Va	312652		d'Agostino	o-Pearson		Sample Va	48439.76		d'Agostino	-Pearson	
Kurtosis	-0.87886					Kurtosis	-1.35368				
Skewness	0.348461		DA-stat	6.223833		Skewness	-0.21533		DA-stat	2.040812	
Range	1970.302		p-value	0.044516		Range	689		p-value	0.360449	
Maximum	2202.719		alpha	0.05		Maximum	1401		alpha	0.05	
Minimum	232.4176		normal	no		Minimum	712		normal	yes	
Sum	72871.59					Sum	12752				
Count	62					Count	12				
Geometri	1033.762					Geometri	1040.691				
Harmonic	887.5334					Harmonic	1018.056				
AAD	462.566					AAD	193.6834				
MAD	402.9327					MAD	172.558				
IQR	788.149					IQR	361.2795				
Kruskal-W	allis Test				DUNN's TE	ST		alpha	0.05	0.05	
					group	R-sum	size	R-mean	z-crit		
	alterniflor	pattens			alterniflo	2356	62	38			
median	1090.852	1140.405			pattens	419	12	34.91667			
rank sum	2356	419					74		1.959964		
count	62	12	74		D TEST						
r^2/n	89528	14630.08	104158.1		group 1	group 2	R-mean	std err	z-stat	R-crit	p-value
H-stat			0.206667		alterniflo	pattens	3.083333	6.782429	0.454606	13.29332	0.649393
H-ties			0.206667								
df			1								
p-value			0.649393								
alpha			0.05								
sig			no								

Basic statistics for each Phragmites study site by dominant plant species

DR-A ALL		DR-A CATTAILS	
Mean	1088.794051	Mean	1453.620608
Standard Error	111.4029685	Standard Error	296.1074689
Median	1252.589285	Median	1778.117647
Mode	#N/A	Mode	#N/A
Standard Deviation	771.8224065	Standard Deviation	725.3122078
Sample Variance	595709.8271	Sample Variance	526077.7988
Kurtosis	-1.73115422	Kurtosis	2.672410895
Skewness	-0.100463183	Skewness	-1.720269576
Range	2109.212684	Range	1901.934223
Minimum	68.63309353	Minimum	98.9010989
Maximum	2177.845777	Maximum	2000.835322
Sum	52262.11443	Sum	8721.723648
Count	48	Count	6
DR-A PHRAG		DR-A SPARTINA	
Mean	871.1563783	Mean	2029.793526
Standard Error	117.6657591	Standard Error	59.5342444
Median	543.5928099	Median	2063.119231
Mode	#N/A	Mode	#N/A
Standard Deviation	705.9945544	Standard Deviation	145.828521
Sample Variance	498428.3108	Sample Variance	21265.95754
Kurtosis	-1.67195497	Kurtosis	1.319643993
Skewness	0.293255036	Skewness	-1.18762117
Range	1929.467465	Range	403.2134243
Minimum	68.63309353	Minimum	1774.632353
Maximum	1998.100559	Maximum	2177.845777
Sum	31361.62962	Sum	12178.76116
Count	36	Count	6

DR-B all		DR-B CATTAILS	
Mean	948.9623037	Mean	1192.819479
Standard Error	57.53279539	Standard Error	125.9389155
Median	911.2852665	Median	1206.10333
Mode	#N/A	Mode	#N/A
Standard Deviation	349.958332	Standard Deviation	356.2090447
Sample Variance	122470.8342	Sample Variance	126884.8835
Kurtosis	-0.16506911	Kurtosis	0.137730361
Skewness	-0.236393094	Skewness	-0.613209853
Range	1514.40632	Range	1106.680952
Minimum	142.0353982	Minimum	549.7607656
Maximum	1656.441718	Maximum	1656.441718
Sum	35111.60524	Sum	9542.555835
Count	37	Count	8
DR-B PHRA	G	DR-B SPARTINA	
Mean	753.9639124	Mean	1062.638574
Standard Error	79.30548879	Standard Error	63.53460825
Median	746.3076923	Median	1140.405436
Mode	#N/A	Mode	#N/A
Standard Deviation	326.984907	Standard Deviation	220.0903391
Sample Variance	106919.1294	Sample Variance	48439.75735
Kurtosis	0.137177303	Kurtosis	-1.353677893
Skewness	-0.034038379	Skewness	-0.215328211
Range	1275.810756	Range	688.7127068
Minimum	142.0353982	Minimum	712.2047244
Maximum	1417.846154	Maximum	1400.917431
Sum	12817.38651	Sum	12751.66289
Count	17	Count	12

MR-A ALL		MR-A CATTAILS	
Mean	1548.176126	Mean	1554.877992
Standard Error	266.8727069	Standard Error	337.3269128
Median	2054.651163	Median	1662.873418
Mode	#N/A	Mode	#N/A
Standard Deviation	706.0788143	Standard Deviation	674.6538257
Sample Variance	498547.2919	Sample Variance	455157.7845
Kurtosis	-1.690646463	Kurtosis	-3.382323675
Skewness	-0.707979121	Skewness	-0.447441468
Range	1647.68147	Range	1398.194665
Minimum	498.2984293	Minimum	747.7852349
Maximum	2145.979899	Maximum	2145.979899
Sum	10837.23288	Sum	6219.51197
Count	7	Count	4
MR-A PHRAG		MR-A Spartina	
Mean	1276.474796	Mean	2064.771323
Standard Error	778.1763667	Standard Error	0
Median	1276.474796	Median	2064.771323
Mode	#N/A	Mode	#N/A
Standard Deviation	1100.507572	Standard Deviation	#DIV/0!
Sample Variance	1211116.915	Sample Variance	#DIV/0!
Kurtosis	#DIV/0!	Kurtosis	#DIV/0!
Skewness	#DIV/0!	Skewness	#DIV/0!
Range	1556.352733	Range	0
Minimum	498.2984293	Minimum	2064.771323
Maximum	2054.651163	Maximum	2064.771323
Sum	2552.949592	Sum	2064.771323
Count	2	Count	1

LR-A All		LR-A cattail [one value]	
		175	
Mean	812.1442643		
Standard Error	241.5374123		
Median	196.3400952		
Mode	#N/A		
Standard Deviation	903.7502429		
Sample Variance	816764.5015		
Kurtosis	-1.355452848		
Skewness	0.772774711		
Range	2155.870092		
Minimum	46.84931507		
Maximum	2202.719407		
Sum	11370.0197		
Count	14		
LR-A phrag		LR-A Spartina	
Mean	459.903298	Mean	2198.584977
Standard Error	188.7041545	Standard Error	3.089448494
Median	179.6962596	Median	2200.494438
Mode	#N/A	Mode	#N/A
Standard Deviation	596.7349323	Standard Deviation	5.351081758
Sample Variance	356092.5794	Sample Variance	28.63407598
Kurtosis	1.170028775	Kurtosis	#DIV/0!
Skewness	1.596671097	Skewness	-1.401298162
Range	1646.034121	Range	10.17831944
Minimum	46.84931507	Minimum	2192.541087
Maximum	1692.883436	Maximum	2202.719407
Sum	4599.03298	Sum	6595.754931
Count	10	Count	3

LR-B PHRAG (NO OTHER PLANT)		
Mean	733.1360148	
Standard Error	64.00444949	
Median	672.379365	
Mode	651.6839378	
Standard Deviation	181.0319211	
Sample Variance	32772.55644	
Kurtosis	-0.31792898	
Skewness	1.149591342	
Range	445.1558472	
Minimum	571.314741	
Maximum	1016.470588	
Sum	5865.088119	
Count	8	

LR-C ALL		LR-C CATTAIL	
Mean	1389.489538	Mean	1264.957155
Standard Error	123.8074135	Standard Error	302.6930036
Median	1533.050847	Median	1264.957155
Mode	#N/A	Mode	#N/A
Standard Deviation	371.4222406	Standard Deviation	428.0725509
Sample Variance	137954.4808	Sample Variance	183246.1088
Kurtosis	-1.369903304	Kurtosis	#DIV/0!
Skewness	-0.075874507	Skewness	#DIV/0!
Range	1064.080601	Range	605.3860071
Minimum	877.9069767	Minimum	962.2641509
Maximum	1941.987578	Maximum	1567.650158
Sum	12505.40585	Sum	2529.914309
Count	9	Count	2

LR-C PHRAG		LR-C SPARTINA	
Mean	1315.045544	Mean	1571.769787
Standard Error	207.9814397	Standard Error	203.491137
Median	1318.744962	Median	1533.050847
Mode	#N/A	Mode	#N/A
Standard Deviation	415.9628794	Standard Deviation	352.4569882
Sample Variance	173025.117	Sample Variance	124225.9285
Kurtosis	-4.492700426	Kurtosis	#DIV/0!
Skewness	-0.023896977	Skewness	0.488378912
Range	866.8782993	Range	701.7166417
Minimum	877.9069767	Minimum	1240.270936
Maximum	1744.785276	Maximum	1941.987578
Sum	5260.182176	Sum	4715.309361
Count	4	Count	3

LR-D ALL		LR-D CATTAILS	
Mean	1271.242607	Mean	1169.161155
Standard Error	50.18003723	Standard Error	64.97834637
Median	1207.814516	Median	1105.263158
Mode	#N/A	Mode	#N/A
Standard Deviation	301.0802234	Standard Deviation	234.2827596
Sample Variance	90649.3009	Sample Variance	54888.41145
Kurtosis	1.318961535	Kurtosis	-1.160104722
Skewness	0.865995457	Skewness	0.530284154
Range	1472.677771	Range	667.3726655
Minimum	696.5834428	Minimum	868.5483871
Maximum	2169.261214	Maximum	1535.921053
Sum	45764.73387	Sum	15199.09501
Count	36	Count	13
LR-D PHRAG		LR-D SPARTINA	
Mean	1277.261128	Mean	1574.419358
Standard Error	72.63410658	Standard Error	131.0056302
Median	1212	Median	1489.419271
Mode	#N/A	Mode	#N/A
Standard Deviation	316.6047304	Standard Deviation	262.0112603
Sample Variance	100238.5553	Sample Variance	68649.90053
Kurtosis	2.670775396	Kurtosis	1.731916824
Skewness	1.09040176	Skewness	1.44142876
Range	1472.677771	Range	574.074494
Minimum	696.5834428	Minimum	1372.382199
Maximum	2169.261214	Maximum	1946.456693
Sum	24267.96142	Sum	6297.677433
Count	19	Count	4

LR-E All		LR-E Cattails	
Mean	860.0925926	Mean	751.4
Standard Error	50.36159444	Standard Error	150.8806151
Median	778	Median	798
Mode	967	Mode	#N/A
Standard Deviation	370.080627	Standard Deviation	337.3793118
Sample Variance	136959.6705	Sample Variance	113824.8
Kurtosis	-0.908077202	Kurtosis	1.241700382
Skewness	0.09096481	Skewness	-0.396008837
Range	1479	Range	930
Minimum	35	Minimum	258
Maximum	1514	Maximum	1188
Sum	46445	Sum	3757
Count	54	Count	5
LR-E Phragn	nites	LR-E Spartina	
Mean	763.030303	Mean	1094.25
Standard Error	62.62116263	Standard Error	76.79282193
Median	701	Median	1138
Mode	967	Mode	#N/A
Standard Deviation	359.7311917	Standard Deviation	307.1712877
Sample Variance	129406.5303	Sample Variance	94354.2
Kurtosis	-0.450016163	Kurtosis	-1.122268797
Skewness	0.43838558	Skewness	-0.395430354
Range	1452	Range	962
Minimum	35	Minimum	552
Maximum	1487	Maximum	1514
Sum	25180	Sum	17508
Count	33	Count	16

NR-A All		NR-A Cattails	
Mean	475.3189268	Mean	544.4100964
Standard Error	49.29828367	Standard Error	146.2819439
Median	486.0244233	Median	583.125
Mode	#N/A	Mode	#N/A
Standard Deviation	274.481227	Standard Deviation	292.5638878
Sample Variance	75339.94396	Sample Variance	85593.62844
Kurtosis	-0.508116117	Kurtosis	1.827175316
Skewness	0.463944452	Skewness	-0.77485588
Range	1018.415851	Range	708.0832988
Minimum	51.5060241	Minimum	151.6535433
Maximum	1069.921875	Maximum	859.7368421
Sum	14734.88673	Sum	2177.640385
Count	31	Count	4
NR-A PHRAG		NR-A SPARTINA	
Mean	240.7117415	Mean	597.0664077
Standard Error	59.43206052	Standard Error	56.36151828
Median	212.3609227	Median	496.7696629
Mode	#N/A	Mode	#N/A
Standard Deviation	187.9406773	Standard Deviation	232.3844931
Sample Variance	35321.69817	Sample Variance	54002.55263
Kurtosis	5.820360652	Kurtosis	-0.227547698
Skewness	2.145147577	Skewness	0.834768399
Range	675.4170528	Range	837.5042926
Minimum	51.5060241	Minimum	232.4175824
Maximum	726.9230769	Maximum	1069.921875
Sum	2407.117415	Sum	10150.12893
Count	10	Count	17

NR-B ALL		NR-B CATTAILS	
Mean	1141.47215	Mean	1250.492212
Standard Error	90.32599231	Standard Error	161.3213593
Median	1298.905609	Median	1441.001742
Mode	#N/A	Mode	#N/A
Standard Deviation	486.4203549	Standard Deviation	510.1429306
Sample Variance	236604.7617	Sample Variance	260245.8096
Kurtosis	-0.940782781	Kurtosis	-0.088672521
Skewness	-0.34842734	Skewness	-1.010290159
Range	1700.99693	Range	1463.482823
Minimum	218.9189189	Minimum	341.5662651
Maximum	1919.915849	Maximum	1805.049088
Sum	33102.69235	Sum	12504.92212
Count	29	Count	10
NR-B PHRAG		NR-B SPARTINA	
Mean	1057.548248	Mean	1129.598752
Standard Error	155.3069518	Standard Error	145.9361325
Median	1106.282444	Median	1095.704698
Mode	#N/A	Mode	#N/A
Standard Deviation	537.9990624	Standard Deviation	386.110714
Sample Variance	289442.9912 -0.974882	Sample Variance	149081.4834
Kurtosis	165	Kurtosis	-0.407774735
Skewness	0.046673091	Skewness	-0.343319747
Range	1700.99693	Range	1138.767099
Minimum	218.9189189	Minimum	508.4254144
Maximum	1919.915849	Maximum	1647.192513
Sum	12690.57897	Sum	7907.191265
Count	12	Count	7

NR-C All		NR-C Cattail	
Mean	1012.777778	Mean	1166.4
Standard Error	51.74362109	Standard Error	45.85477074
Median	1063	Median	1112
Mode	#N/A	Mode	#N/A
Standard Deviation	219.5295922	Standard Deviation	102.5343845
Sample Variance	48193.24183	Sample Variance	10513.3
Kurtosis	0.064153291	Kurtosis	-1.758951456
Skewness	-0.762276978	Skewness	0.810386889
Range	765	Range	232
Minimum	561	Minimum	1078
Maximum	1326	Maximum	1310
Sum	18230	Sum	5832
Count	18	Count	5
NR-C Phragmites		NR-C Spartina	
Mean	868	Mean	1090.8
Standard Error	82.98214094	Standard Error	61.43809893
Median	896.5	Median	1048
Mode	#N/A	Mode	#N/A
Standard Deviation	234.7089383	Standard Deviation	137.3797656
Sample Variance	55088.28571	Sample Variance	18873.2
Kurtosis	-1.607499241	Kurtosis	3.428881809
Skewness	-0.012264376	Skewness	1.780376539
Range	623	Range	348
Minimum	561	Minimum	978
		1	
Maximum	1184	Maximum	1326
Maximum Sum	1184 6944	Maximum Sum	1326 5454

Sub-Watershed Comparisons (ignoring plant species)

Test sub-wa	tershed compari	<u>sons</u>									
Kruskal-Wal	lis Test				DUNN's TEST			alpha	0.05	0.016666667	
					group	R-sum	size	R-mean	z-crit		
	DR	LR	NR		DR	14371	92	156.2065217			
median	1086	1016	861		LR	18319	121	151.3966942			
rank sum	14371	18319	9796		NR	9796	78	125.5897436			
count	92	121	78	291			291	Ì	1.959963985		
r^2/n	2244843.924	2773436.041	1230277.128	6248557.093	D TEST						
H-stat				6.439922813	group 1	group 2	R-mean	std err	z-stat	R-crit	p-value
H-ties				6.439930653	DR	LR	4.809827524	11.63992644	0.413218034	22.8138366	0.679446876
df				2	DR	NR	30.61677815	12.95180444	2.363900589	25.38507025	0.018083664
p-value				0.039956444	LR	NR	25.80695063	12.21894147	2.112044704	23.94868521	0.034682615
alpha				0.05							
sig				yes							

Entire Study – Comparing plant species

ENTIRE STUDY -COM	PARING PLANT SPECIE	ES									
Kruskal-Wallis Test					DUNN's TI	EST		alpha	0.05	0.016667	
					group	R-sum	size	R-mean	z-crit		
	Cattails	Phrag	Spartina (undifferent	iated)	Cattails	10094	58	174.0345			
median	1161	744	1115		Phrag	19774	159	124.3648			
rank sum	10094	19774	12618		Spartina (12618	74	170.5135			
count	58	159	74	291			291		1.959964		
r^2/n	1756704.069	2459189.157	2151539.514	6367432.74	D TEST						
H-stat				23.22789715	group 1	group 2	R-mean	std err	z-stat	R-crit	p-value
H-ties				23.22792543	Cattails	Phrag	49.6697	12.90816	3.847931	25.29953	0.000119
df				2	Cattails	Spartina (3.520969	14.75721	0.238593	28.92359	0.811421
p-value				9.03899E-06	Phrag	Spartina (46.14873	11.84161	3.897169	23.20912	9.73E-05
alpha				0.05							
sig				yes							

<u>Site Comparisons ignoring plant species</u> (statistically significant differences highlighted)

SITE-SITE	COMPARIS	ONS (IGNO	ORING PLA	NT SPECIES	5)							
Kruskal-W	/allis Test											
	DR-A	DR-B	LR-A	LR-B	LR-C	LR-D	LR-E	MR-A	NR-A	NR-B	NR-C	
median	1253		196	672	1320				486			
rank sum	7558		1552	832	6646			1507	1979			
count	48		14	8	32				31			293
r^2/n H-stat	1190070	760909.1	1/2050.3	86528	1380291	427342.2	889863.4	324435.6	126336.8	878004	426580.1	6662411 64.88556
H-ties												64.88564
df												104.0050
p-value												4.26E-10
alpha												0.0
sig												yes
Dunn's Te	st results s	orted by p	-value									
group 1	group 2	R-mean	std err	z-stat	R-crit	p-value						
LR-C	NR-A	143.8488	21.20613	6.783358	41.56326	1.17E-11						
NR-A	NR-B	110.1613	21.73916	5.067412	42.60798	4.03E-07						
DR-A	NR-A	93.61962	19.38917	4.82845	38.00207	1.38E-06						
MR-A	NR-A	151.447	35.21348	4.300825	69.01716	1.7E-05						
LR-C	LR-E	79.31713	18.7726	4.225155	36.79362	2.39E-05						
LR-D	NR-A	117.469	27.80487	4.224763	54.49654	2.39E-05						
DR-B	NR-A	79.5667	20.48895	3.883395	40.15761	0.000103						
NR-A	NR-C	90.10573	24.93607	3.61347	48.8738	0.000302						
LR-A	LR-C	96.83036	26.96416	3.591076	52.84879	0.000329						
LR-E	NR-A	64.53166	18.96177	3.403252	37.16438	0.000666						
DR-B	LR-C	64.28209	20.31401	3.164421	39.81473	0.001554						
LR-B	LR-C	103.6875	33.26267	3.117234	65.19363	0.001826						
LR-A	MR-A	104.4286	38.95324	2.68087	76.34696	0.007343						
DR-A	LR-C	50.22917	19.20421	2.615529	37.63956	0.008909						
LR-E	MR-A	86.91534	33.80384	2.571168	66.25431	0.010136						
LR-B	MR-A	111.2857	43.55105	2.555293	85.35849	0.01061						
LR-E	NR-B	45.62963	19.3727	2.355357	37.9698	0.018505						
LR-A	NR-B	63	27	2.305717	53.67429	0.021126						
LR-A	LR-D	70.45055	32.41106	2.173658	63.52451	0.029731						
LR-C	NR-C	53.74306	24.79253	2.167712	48.59246	0.030181						
LR-B	NR-B	70	33.605	2.083023	65.86459	0.037249						
DR-B	MR-A	71.88031	34.68355	2.072461	67.9785	0.038222						
LR-B	LR-D	77.30769	37.8129	2.044479	74.11193	0.040906						
LR-D	LR-E	52.93732	25.99656	2.03632	50.95232	0.041718		data conti	nue			
DR-A	LR-A	46.60119	25.55985	1.823219	50.09638	0.06827				*		
DR-A	LR-E	29.08796	16.69282	1.742544	32.71732	0.081413						

<u>Site comparisons for the same plant species (statistically significant differences highlighted)</u>

CATTAIL											
Kruskal-Walli	is Test										
	DR-A CATTAIL	DR-B CATTAIL	LR-A CATTAIL	LR-C CATTAIL	LR-D CATTAIL	LR-E CATTAIL	MR-A CATTAIL	NR-A CATTAIL	NR-B CATTAIL	NR-C CATTAIL	
median	1778										
	246										
rank sum	246									_	58
count	10086										
r^2/n	10086	7750.125	9	2244.5	11401.92308	1036.8	6480.25	272.25	11902.5	4500	55683.34808
H-stat											18.26597806
H-ties											18.26597806
df											9
p-value											0.032210155
alpha											0.05
sig	DUNN's Test resu										yes
	Sorted by p-valu	e									
	D TEST										
	group 1	group 2	R-mean	std err	z-stat	R-crit	p-value				
	DR-A CATTAIL	NR-A CATTAIL	32.75	10.90043322	3.004467743	21.36445653	0.00266046				
	MR-A CATTAIL	NR-A CATTAIL	32	11.94082633	2.679881537	23.40358954	0.007364822				
	NR-A CATTAIL	NR-B CATTAIL	26.25	9.99041207	2.627519247	19.58084785	0.008600998				
	DR-A CATTAIL	LR-E CATTAIL	26.6	10.22551276	2.601336543	20.04163672	0.009286131				
	LR-E CATTAIL	MR-A CATTAIL	25.85	11.3280625	2.281943625	22.20259451	0.022492669				
	LR-D CATTAIL	NR-A CATTAIL	21.36538462	9.655442201	2.212781576	18.92431897	0.026912708				
	DR-B CATTAIL	NR-A CATTAIL	22.875								
	LR-E CATTAIL	NR-B CATTAIL	20.1								
	DR-A CATTAIL	LR-A CATTAIL	38								
	LR-A CATTAIL	MR-A CATTAIL	37.25								
	NR-A CATTAIL	NR-C CATTAIL	21.75								
	LR-A CATTAIL	NR-B CATTAIL	31.5								
	DR-B CATTAIL	LR-E CATTAIL	16.725								
	LR-C CATTAIL	NR-A CATTAIL	25.25								
	LR-D CATTAIL	LR-E CATTAIL	15.21538462								
	DR-B CATTAIL	LR-A CATTAIL	28.125								
	LR-A CATTAIL	LR-D CATTAIL	26.61538462	17.52434204	1.518766556	34.34707926	0.128821267				
	LR-A CATTAIL	LR-C CATTAIL	30.5	20.68211788	1.474703905	40.53620617	0.140292166		data continues	▼	
	LR-E CATTAIL	NR-C CATTAIL	15.6	10.68019975	1.460646839	20.93280685	0.144112385				

PHRAGMITES												
Kruskal-Wallis Test												
	DR-A PHRAGMITES											AGMITES
median	544	746						1277	212	1106	897	
rank sum	2827	1291	424	584	487			207	268	1188	677	
count	36	17	10					2	10	12	8	159
r^2/n	221998.0278	98040.05882	17977.6	42632	59292.25	273120.2105	187730.9394	21424.5	7182.4	117612	57291.13	1104301
H-stat												40.89675
H-ties												40.89706
df												10
p-value												1.18E-05
alpha												0.05
sig												yes
8												,,,,
D TEST												
group 1	group 2	R-mean	std err	z-stat	R-crit	p-value						
LR-D PHRAGMITES		93.09473684	17.98823316	5.175312995	35.25628914							
LR-A PHRAGMITES	LR-D PHRAGMITES	77.49473684	17.98823316		35.25628914	1.64678E-05						
NR-A PHRAGMITES	NR-B PHRAGMITES	72.2	19.71455721	3.662268406	38.63982209	0.000249992						
LR-C PHRAGMITES	NR-A PHRAGMITES	94.95	27.23957529	3.485737167	53.38858652	0.000490783						
LR-D PHRAGMITES	LR-E PHRAGMITES	44.47049442	13.25971566	3.353804528	25.98856514	0.000797086						
DR-A PHRAGMITES	LR-D PHRAGMITES	41.36695906	13.05628446	3.168356142	25.58984732	0.001533036						
DR-A PHRAGMITES	NR-A PHRAGMITES	51.72777778	16.45864111	3.142894814	32.2583438	0.001672859						
LR-E PHRAGMITES	NR-A PHRAGMITES	48.62424242	16.62048021	2.925561825	32.57554262	0.003438348						
LR-A PHRAGMITES	LR-C PHRAGMITES	79.35	27.23957529	2.913041013	53.38858652	0.003579276						
LR-A PHRAGMITES	NR-B PHRAGMITES	56.6	19.71455721	2.870974956	38.63982209	0.004092079						
DR-B PHRAGMITES	LR-D PHRAGMITES	43.95356037	15.37150175	2.859418753	30.12758983	0.004244181						
DR-B PHRAGMITES	NR-A PHRAGMITES	49.14117647	18.34947872	2.678069346	35.96431743	0.007404789						
NR-A PHRAGMITES	NR-C PHRAGMITES	57.825	21.84024816	2.647634751	42.80609982	0.008105705						
LR-B PHRAGMITES	LR-D PHRAGMITES	46.89473684	19.40556974	2.416560682	38.03421778	0.015667914						
DR-A PHRAGMITES	LR-A PHRAGMITES	36.12777778	16.45864111	2.195064437	32.2583438	0.028158976						
MR-A PHRAGMITES	NR-A PHRAGMITES	76.7	35.66497591	2.150569236	69.90206828	0.031510216						
LR-B PHRAGMITES	NR-A PHRAGMITES	46.2	21.84024816	2.115360579	42.80609982	0.034399227						
LR-A PHRAGMITES	LR-E PHRAGMITES	33.02424242	16.62048021	1.986960786	32.57554262	0.046926743		Data contir	nue			
LR-A PHRAGMITES	NR-C PHRAGMITES	42.225	21.84024816	1.933357152	42.80609982	0.053192216			+			
LR-C PHRAGMITES	LR-E PHRAGMITES	46.32575758	24.37699713	1.900388195	47.77803643	0.057382195						
DR-B PHRAGMITES	LR-A PHRAGMITES	33.54117647	18.34947872	1.827908955	35.96431743	0.067563217						

SPRATINA	(undiffere	ntiated)									
Kruskal-W	/allis Test										
	DR-A SPAI	DR-B SPAF	LR-A SPAF	LR-C SPAR	LR-D SPAR	LR-E SPAR	MR-A SPA	NR-A SPA	NR-B SPAI	NR-C SPAF	RTINA
median	2063	1140	2200	1533	1489	1138	2065	497	1096	1048	
rank sum	406	419	219	168	233	599	68	213	270	180	
count	6	12	3	3	4	16	1	17	7	5	74
r^2/n	27473	14630	15987	9408	13572	22425	4624	2669	10414	6480	127682.1
H-stat											51.06943
H-ties											51.06943
df											9
p-value											6.78E-08
alpha											0.05
sig											yes
Dunn's Te	st results so	orted by p-	value								
	group 2		std err	z-stat	R-crit	p-value					
	NR-A SPAI		10.21221	5.399151		6.7E-08					
LR-A SPAF	NR-A SPAI	60.47059	13.46746	4.490125	26.39574	7.12E-06					
LR-D SPAF	NR-A SPAI	45.72059	11.95119	3.82561	23.4239	0.00013					
LR-E SPAR	NR-A SPAI	24.90809	7.490803	3.325156	14.6817	0.000884					
LR-C SPAR	NR-A SPAI	43.47059	13.46746	3.227823	26.39574	0.001247					
DR-A SPAI	DR-B SPAF	32.75	10.75291	3.045688	21.07531	0.002321					
DR-A SPAI	LR-E SPAR	30.22917	10.29512	2.93626	20.17807	0.003322					
DR-B SPA	NR-A SPAI	22.38725	8.108486	2.760966	15.89234	0.005763					
DR-B SPA	LR-A SPAR	38.08333	13.88194	2.743372	27.20811	0.006081					
NR-A SPA	INR-B SPAF	26.04202	9.658018	2.696414	18.92937	0.007009					
LR-A SPAF	LR-E SPAR	35.5625	13.53044	2.628332	26.51918	0.00858					
MR-A SPA	NR-A SPAI	55.47059	22.1293	2.506658	43.37263	0.012188					
DR-A SPAI	NR-B SPAF	29.09524	11.96473	2.431751	23.45044	0.015026					
DR-A SPAI	NR-C SPAF	31.66667	13.02242	2.431704	25.52347	0.015028					
LR-A SPAF	NR-C SPAF	37	15.70563	2.355844	30.78246	0.018481		data conti	nue		
LR-A SPAF	NR-B SPAF	34.42857	14.84042	2.319919	29.08669	0.020345					
NR-A SPA	INR-C SPAF	23.47059	10.94102	2.145192	21.444	0.031937					
DR-B SPA	LR-D SPAR	23.33333	12.41639	1.879237	24.33567	0.060212					
LR-D SPAF	LR-E SPAR	20.8125	12.02212	1.731185	23.56291	0.083419					
LR-D SPAF	NR-C SPAI	22.25	14.42654	1.542297	28.27549	0.123002		*			

Appendix E-2. Summary Statistics for Marsh-Fringe Reference Sites

Descriptive Statistics		Shapiro-Wilk Test					
				, ,			
Specif	fic Conductance (μS/cm)	Specific Conductance (μ					
Mean	1914	W-stat	0.914200657				
Standard Error	102.7837023	p-value	0.311108994				
Median	1963	alpha	0.05				
Mode	#N/A	normal	yes				
Standard Deviation	325.0306058						
Sample Variance	105644.8947	d'Agostino-Pearson					
Kurtosis	-1.435832001						
Skewness	-0.349615571	DA-stat	1.961452548				
Range	882	p-value	0.375038619				
Maximum	2293	alpha	0				
Minimum	1411	normal	yes				
Sum	19142						
Count	10						
Geometric Mean	1888.136137						
Harmonic Mean	1861.18177						
AAD	275.3322172						
MAD	287.3917063						
IQR	550.5328327						

For Marsh-Fringe Refere	ence Sites to Phragmites Study	/ Sites Comparisons				
	.	•				
DUNN's TEST			alpha	0.05		
group	R-sum	size	R-mean	z-crit		
Entire study cattails	10147	58	174.9482759			
Entire study phragmites	19851	159	124.8490566			
Entire study alterniflora	10737	62	173.1774194			
DR-B patens	1964	12	163.6666667			
Patens reference site	2752	10	275.2			
		301		1.959963985		
D TEST						
group 1	group 2	R-mean	std err	z-stat	R-crit	p-value
Entire study cattails	Entire study phragmites	50.09921926	13.35098062	3.752474871	26.16744117	0.000175097
Entire study cattails	Entire study alterniflora	1.770856507	15.89925002	0.111379877	31.16195743	0.911315117
Entire study cattails	DR-B patens	11.2816092	27.60198132	0.408724615	54.09888928	0.682741767
Entire study cattails	Patens reference site	100.2517241	29.801376	3.363996486	58.40962365	0.000768225
Entire study phragmites	Entire study alterniflora	48.32836275	13.03159539	3.708553044	25.54145762	0.000208447
	ziiii z staa j aiteiiiiioi a	40.32030273	13.0313333	3.700333044	20.0.12.0.02	
Entire study phragmites		38.81761006		1.489786607	51.06846667	
Entire study phragmites Entire study phragmites						0.136280354
	DR-B patens	38.81761006	26.05581892	1.489786607	51.06846667	0.136280354 1.1666E-07
Entire study phragmites	DR-B patens Patens reference site DR-B patens	38.81761006 150.3509434	26.05581892 28.37531213 27.44891924	1.489786607 5.298653375	51.06846667 55.61458983	0.136280354 1.1666E-07 0.728975137 0.000582198

Results of Pairwise Comparisons

(Significantly different pairs involving the reference sites have yellow highlight; significant differences with gray highlight do not pertain to the reference sites and were presented previously in **Appendix E-1**)

DUNN's TEST			alpha	0.05		
group	R-sum	size	R-mean	z-crit		
Entire study cattails	10147	58	174.9482759			
Entire study phragmites	19851	159	124.8490566			
Entire study alterniflora	10737	62	173.1774194			
DR-B patens	1964	12	163.6666667			
Patens reference site	2752	10	275.2			
		301		1.959963985		
D TEST						
group 1	group 2	R-mean	std err	z-stat	R-crit	p-value
Entire study cattails	Entire study phragmites	50.09921926	13.35098062	3.752474871	26.16744117	0.000175097
Entire study cattails	Entire study alterniflora	1.770856507	15.89925002	0.111379877	31.16195743	0.911315117
Entire study cattails	DR-B patens	11.2816092	27.60198132	0.408724615	54.09888928	0.682741767
Entire study cattails	Patens reference site	100.2517241	29.801376	3.363996486	58.40962365	0.000768225
Entire study phragmites	Entire study alterniflora	48.32836275	13.03159539	3.708553044	25.54145762	0.000208447
Entire study phragmites	DR-B patens	38.81761006	26.05581892	1.489786607	51.06846667	0.136280354
Entire study phragmites	Patens reference site	150.3509434	28.37531213	5.298653375	55.61458983	1.1666E-07
Entire study alterniflora	DR-B patens	9.510752688	27.44891924	0.34648915	53.79889313	0.728975137
Entire study alterniflora	Patens reference site	102.0225806	29.65966632	3.439775065	58.13187779	0.000582198
DR-B patens	Patens reference site	111.5333333	37.26632565	2.992871752	73.04065612	0.002763659