MILL BROOK SALT MARSH YEAR 5 POST-RESTORATION MONITORING & PROJECT SUMMARY REPORT

MILL BROOK, SCARBOROUGH, MAINE

June 2010

Prepared for:

United States Fish & Wildlife Service – Gulf of Maine Program Friends of Scarborough Marsh

Prepared by:

451 Presumpscot Street Portland, ME 04103

[PAGE INTENTIONALLY LEFT BLANK]

MILL BROOK SALT MARSH YEAR 5 POST-RESTORATION MONITORING & PROJECT SUMMARY REPORT

Prepared for:

Friends of Scarborough Marsh P.O. Box 7049 Scarborough, Maine 04070

Prepared by:

451 Presumpscot Street Portland, Maine 04103

June 2010

[PAGE INTENTIONALLY LEFT BLANK]

TABLE OF CONTENTS

SECT	TION	PAGE
1.0	INT	roduction1
1.1	P	PROJECT GOALS
1.2	A	ADDITIONAL WATER QUALITY ANALYSIS
1.3	N	AONITORING EFFORT
2.0	ME	THODS
2.1	(COVER TYPE MAP7
2.2	S	TTE EVALUATION
2	2.2.1	Site Assessment7
2	2.2.2	Vegetation Monitoring
2	2.2.3	Nekton Sampling
2	2.2.4	Mosquito Sampling9
2	2.2.5	Photographic Documentation9
2.3	V	VATER LEVEL MONITORING
2.4	V	VATER QUALITY
2	2.4.1	Nutrient Load Analysis10
2	2.4.2	Additional Water Quality Analysis11
2.5	A	ADDITIONAL PROJECT INFORMATION 11
3.0	RE	SULTS AND DISCUSSION
3.1	(COVER TYPE MAP13
3.2	S	TTE EVALUATION
3	3.2.1	Site Assessment
3	3.2.2	Vegetation Monitoring16
3	3.2.3	Nekton Sampling
3	3.2.4	Mosquito Sampling
3	3.2.5	Photographic Documentation
3.3	V	VATER LEVEL MONITORING
3.4	V	VATER QUALITY
3	8.4.1	Nutrient Load Analysis

3.	4.2 Additional Water Quality Analysis	29
3.	4.3 Water Quality Analysis Summary	
3.5	Additional Project Information	
4.0	MANAGEMENT IMPLICATIONS AND RECOMMENDATIONS	
4.1	MANAGEMENT IMPLICATIONS	
4.2	MANAGEMENT RECOMMENDATIONS	
5.0	REFERENCES	39

LIST OF APPENDICES

APPENDIX

Appendix A.	Cover Type Map
Appendix B.	Completed Site Evaluation Data Forms
Appendix C.	Photographic Documentation
Appendix D.	Water Level Data
Appendix E.	Statistical Analysis Results
Appendix F.	Field Notes
Appendix G.	Species List

LIST OF FIGURES

FIGURE	PAGE
Figure 1. Site Location for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine	2
Figure 2. Sampling Locations of Monitoring Activities for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine	6
Figure 3. Surface and Ground Water Sampling Data Recorder Set-up for Mill Brook Marsh Restoration Monitoring Project, Scarborough, Maine	
Figure 4. Comparison Photos Pre-Restoration and Year 5 Post-Restoration for Contr Pool and Experimental Pool #1 and #2.	

LIST OF TABLES

PAGE
Cable 1. Monitoring Activities Performed for the Mill Brook Salt Marsh RestorationMonitoring Project, Scarborough, Maine.5
Cable 2. Approximate Percent Area Change of Community Types Pre-RestorationCompared to Year 5 Post-Restoration Monitoring for the Mill Brook Salt MarshRestoration Monitoring Project, Scarborough, Maine.14
Cable 3. Mean Number of Species in Vegetation Plots for the Mill Brook Salt MarshRestoration Monitoring Project, Scarborough, Maine.18
Cable 4. Mean Percent Cover in Vegetation Plots for the Mill Brook Salt MarshRestoration Monitoring Project, Scarborough, Maine.19
Cable 5. Mean Number of Nekton Species for the Mill Brook Salt Marsh RestorationMonitoring Project, Scarborough, Maine.21
Cable 6. Mean Fish Abundance for the Mill Brook Salt Marsh Restoration MonitoringProject, Scarborough, Maine
Sable 7. Mean Categorical Number of Mosquito Larvae Observed for the Mill Brook SaltMarsh Restoration Monitoring Project, Scarborough, Maine
Sable 8. Nutrient Load Analysis Results for Mill Brook Salt Marsh RestorationMonitoring Project, Scarborough, Maine.29
Sable 10. Fecal Coliform Results for Mill Brook Salt Marsh Restoration MonitoringProject, Scarborough, Maine

Page intentionally left blank.

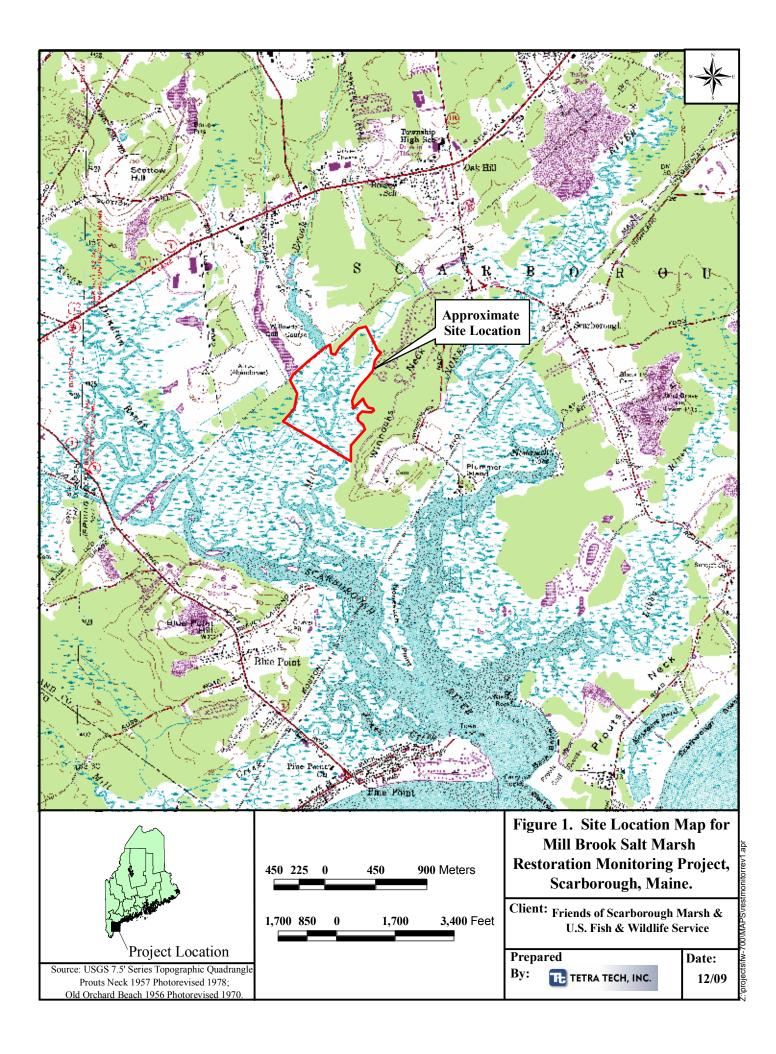
1.0 INTRODUCTION

The Scarborough Marsh Planning Team (SMPT) has conducted salt marsh restoration activities along Mill Brook, in the Scarborough Marsh Wildlife Management Area, in Scarborough, Maine (Figure 1). SMPT comprises Friends of Scarborough Marsh (FSM), United States Fish and Wildlife Service (USFWS), Maine Department of Inland Fisheries and Wildlife (MDIFW), United States Department of Agriculture – Natural Resources Conservation Service (NRCS), Conservation Law Foundation, and Ducks Unlimited, Inc.

1.1 **PROJECT GOALS**

The primary goals of SMPT's restoration efforts at the Mill Brook Salt Marsh Restoration Monitoring Project (Project) site were to:

- Increase the amount of pool habitat on the marsh surface to pre-ditch conditions;
- Reduce pooling of freshwater on the marsh; and,
- Eliminate the invasive plant *Phragmites australis (Phragmites)* populations from several sections of the marsh that were formerly dominated by *Spartina patens*, and minimize the potential for *Phragmites* to re-populate the marsh.


To accomplish these goals, restoration activity at Mill Brook included the following components:

- Plugging man-made ditches to restore hydrology to the marsh surface;
- Excavating a new ditch and clearing out two existing ditches to minimize freshwater pooling in the northern portion of the marsh;
- Removing one short berm that currently impedes water flow to that area of the marsh; and,
- Controlling *Phragmites* in various areas of the marsh via the application of an herbicide (i.e., Rodeo).

Restoring natural salt marsh conditions and improving hydrological conditions will allow native salt marsh dependant species (i.e., fish, invertebrates, waterbirds, shorebirds, wading birds, waterfowl) to be reestablished and/or to increase in number.

1.2 ADDITIONAL WATER QUALITY ANALYSIS

Following completion of initial pre-restoration monitoring activities in 2003, the USFWS identified eight additional sampling locations for water quality analysis. The water quality analysis was conducted to help understand the composition of runoff as it enters along the upland edge of the marsh, after filtration by the marsh, and as it moves downstream and mixes with tidal water. The additional water quality analysis was designed to answer the following questions:

- 1. Potential toxic effect of the runoff constituents: Is the runoff from up-gradient residential areas and Willowdale Golf Course likely to have an adverse effect on ecological receptors?
- 2. Potential filtration function being performed by the marsh: Is the upper marsh boundary currently providing an important filtration function for the runoff; a function that would be lost if the runoff were allowed to discharge directly to tidal creeks rather than pool along the upland boundary of the marsh surface?

1.3 MONITORING EFFORT

To assist in this effort, Tetra Tech, Inc. (formerly Northern Ecological Associates, Inc.) was contracted by the FSM to conduct pre- and post-restoration monitoring of an approximately 14.0- acre portion of the Scarborough Marsh Wildlife Management Area along Mill Brook. Monitoring activities were designed following the USFWS's *Salt Marsh Restoration Monitoring Plan for Ditch-Plugging Efforts in New England Marshes (Monitoring Plan)* (USFWS 2001) and the United States Geological Survey's *Monitoring Nekton in Shallow Estuarine Habitats* (Raposa and Roman 2001).

This Project Summary Report presents data gathered as part of pre- and post-restoration activities for the Project and includes a brief discussion of monitoring methodology (Section 2.0), a results and discussion section for pre- and post-restoration analyses (Section 3.0), and a management implication and recommendations section (Section 4.0). Also included are, a cover type map of the project area (Appendix A), completed site evaluation data forms (Appendix B), photographic documentation (Appendix C), water level data (Appendix D), statistical analysis results (Appendix E), field notes (Appendix F), and a list of wildlife species observed during monitoring activities (Appendix G).

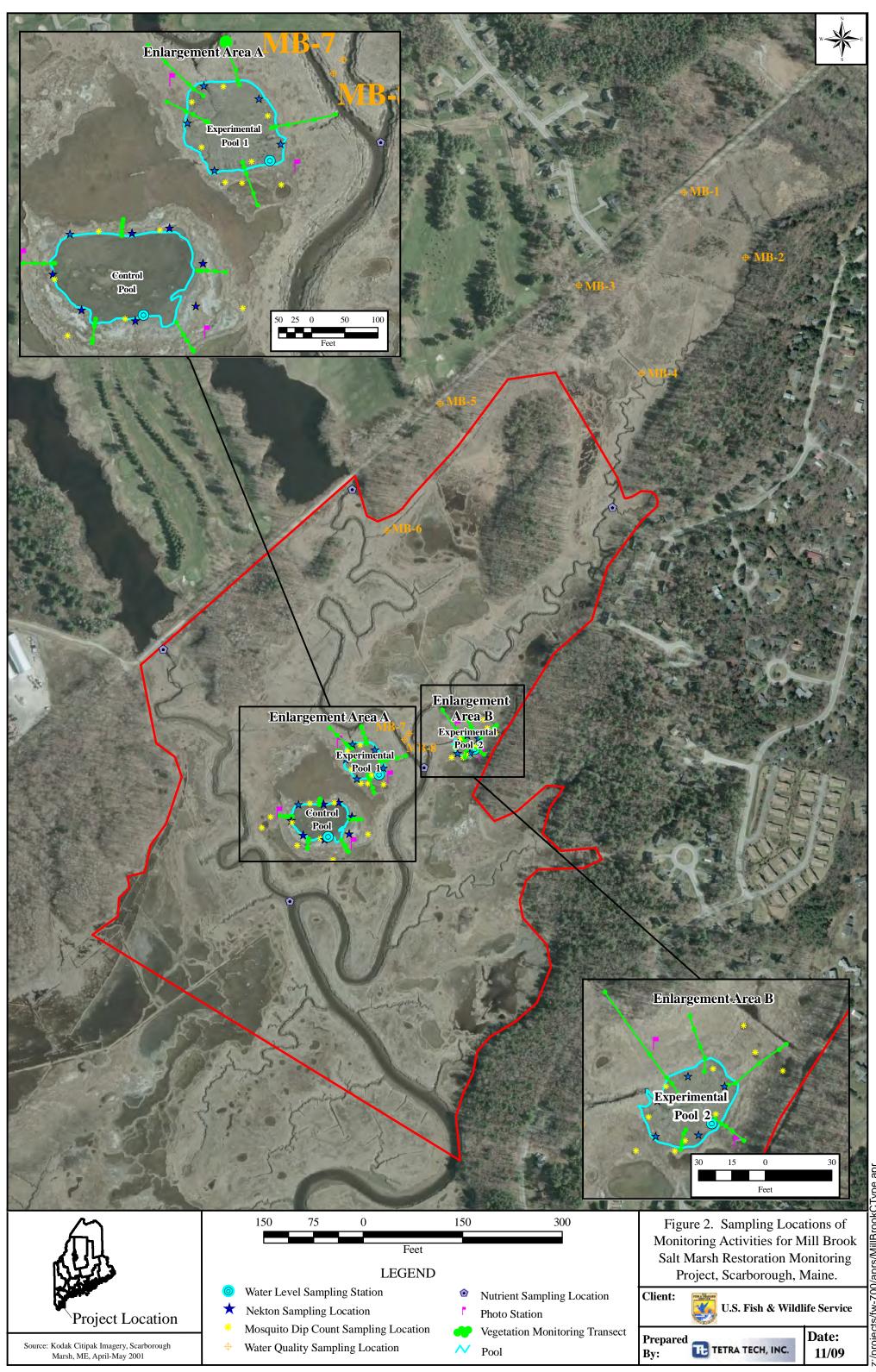
Page intentionally left blank.

2.0 METHODS

Tetra Tech biologists conducted pre-restoration monitoring in 2003 and 2004, and postrestoration monitoring in 2006 (Year 2) and 2009 (Year 5) (FSM 2003, 2004, and 2006). Monitoring methods were selected based on the *Monitoring Plan* (USFWS 2001) and the United States Geological Survey's *Monitoring Nekton in Shallow Estuarine Habitats* (Raposa and Roman 2001), and modified as described below to account for site- and Project-specific conditions. Tetra Tech biologists identified three monitoring pool/panne complexes to monitor: Control Pool, Experimental Pool 1, and Experimental Pool 2, as shown in Figure 2.

Monitoring activities included preparing a cover type map; completing a site evaluation, which included a site assessment, vegetation monitoring, nekton sampling, and mosquito sampling; photographic documentation of site conditions; water level monitoring; and, nutrient load analysis. Additional water quality and fecal coliform sampling was added in 2004 to complete the pre-restoration sampling work. Table 1 provides the timeline and frequency for the monitoring activities performed in the Project area.

		Pre-Re	storation	Post-Restoration		
				Year 2	Year 5	
	Monitoring Activities	2003	2004	2006	2009	
Cover	Type Mapping	Х			Х	
u	Site Assessment	Х		Х	Х	
Site valuation	Vegetation Monitoring	Х			Х	
Site lua	Nekton Sampling	Х		X	Х	
2 val	Mosquito Sampling	Х		X^1	Х	
Ĥ	Photo Documentation	Х		X	Х	
Water Level Monitoring		Х		X		
Nutrient Load Analysis		Х				
Additional Water Quality Analysis*			X			


Table 1. Monitoring Activities Performed for the Mill Brook Salt Marsh Restoration
Monitoring Project, Scarborough, Maine.

* Includes analysis for sediment, calcium, magnesium, hardness, 13 U.S. Environmental Protection Agency Priority Pollutants, and fecal coliform bacteria.

The following sections provide a summary of the techniques used during monitoring activities at Mill Brook.

¹ Two additional mosquito sampling events were conducted in July and September 2007 to supplement the data collected during Year 2 post-restoration monitoring; the sampler conducting monitoring for one of the events in 2006 was unaware of the post-restoration sampling locations in the Experimental Pools, and the desired tidal conditions for sampling were not present again until too late in the season to capture these data in the same year.

[PAGE INTENTIONALLY LEFT BLANK]

z:/projects/fw-700/aprs/MillBrookCType.apr

[PAGE INTENTIONALLY LEFT BLANK]

2.1 COVER TYPE MAP

The pre-restoration cover type map was generated for the Project area based on a review of digital ortho-quads, aerial photographs, and observations made during site visits in July through October 2003. Changes to cover type classification and boundaries on the pre-restoration cover type map were approximated based on a visual assessment of the site conditions during a site visit in September 2009 to generate the post-restoration cover type map.

Each unique community greater than 50 m² was delineated and mapped using ARCView/ARC/INFO[®] GIS software (Environmental Systems Research Institute, Inc. [ESRI] 1982, 1996). A more rigorous mapping effort was conducted in areas within 75 m around the three panne/pool complexes selected for intensive monitoring. In these areas, unique communities greater than 10 m² were delineated and mapped; additional level of detail was included, where noted, however the minimum mapping unit is 10 m². To assist in cover type mapping, where necessary, the boundaries of cover types were recorded using a Trimble Pro-Mark IV Global Positioning System (GPS).

The dominant vegetated wetland communities and invasive plants such as *Phragmites australis* were differentiated and mapped. Significant site features were also recorded on the cover type map, including pools, pannes, tidal creeks, and upland forest.

2.2 SITE EVALUATION

Pre- and post-restoration site conditions were established by performing a site evaluation in 2003 pre-restoration, and Year 2 (2006) and Year 5 (2009) post-restoration. Site evaluations included completion of a variety of tasks, as outlined in Table 1. In general, the site evaluations were focused on the areas surrounding and including the Control Pool, and Experimental Pool #1 and #2, and included completing a site assessment, nekton sampling, and mosquito sampling; and, photographic documentation of pre- and post-restoration. The annual site evaluations were based on the procedures presented in the *Monitoring Plan* (USFWS 2001) and the United States Geological Survey's *Monitoring Nekton in Shallow Estuarine Habitats* (Raposa and Roman 2001), and modified according to specific site conditions. Figure 2 shows the approximate site evaluation sampling locations overlaid onto an aerial photograph of the marsh.

2.2.1 Site Assessment

The site assessment was conducted pre-restoration in August 2003, and in August 2006 (Year 2) and September 2009 (Year 5) post-restoration, to qualitatively assess the overall site conditions. The assessment included notation and/or observation of existing weather conditions and tidal cycle; extent of natural pools and pannes; presence of undesirable and desirable species; presence of nekton, macro-invertebrates, birds, and mammals; observation of recreational activities; and, evidence of site disturbance.

2.2.2 Vegetation Monitoring

Vegetation monitoring was conducted to characterize the major plant communities within the three monitoring areas at Mill Brook through quantitative and qualitative field measurements and observations. Pre-restoration vegetation monitoring was conducted in July and August 2003, and post-restoration vegetation monitoring was conducted in August 2009 (Year 5). A general site reconnaissance was conducted within a 75 m radius surrounding each monitoring area to develop a comprehensive species list for each unique wetland community type.

Five transects were established in each of the three monitoring areas, for a total of 15 transects, and five sampling plots were located along each transect. These fixed 1 m² quadrat sampling plots were used to quantify species composition and note overall plant condition in each major plant community located along a gradient from the panne/pool complex toward an adjacent upland edge. Each transect extended from the panne/pool complex outward approximately 50 m into the surrounding marsh. Wooden stakes were placed and a sub-meter accuracy GPS was used to mark and record each sampling plot location during pre-restoration vegetation monitoring; a GPS was used to navigate to and locate the sampling plot locations during post-restoration monitoring. Observers recorded plant species, approximate percent cover, and vigor for each plot, on transect data forms.

2.2.3 Nekton Sampling

Nekton sampling was conducted within each of the three monitoring areas to determine the presence/absence and relative abundance of fish and invertebrate species in the pool/panne complexes. Pre-restoration nekton sampling was conducted in August and September 2003 and post-restoration nekton sampling was conducted in August and September 2006 (Year 2), and August and October 2009 (Year 5).

Sampling methodology was in accordance with the United States Geological Survey's *Monitoring Nekton in Shallow Estuarine Habitats* (Raposa and Roman 2001) and involved use of a throw trap. The throw trap consisted of a three-dimensional aluminum frame that measured 1 m^2 and 0.5 m high. The outer surfaces of the trap were covered with a 3-millimeter mesh screen attached to the frame bars with small cable ties, and the top and bottom were left open. Nekton was removed from the trap using a 1 m by 0.5 m dip net that fit snugly within the throw trap. The dip-netting procedure was performed three times at each sampling location.

During pre-restoration data collection, nekton could not be assessed in either of the Experimental Pools because the water drained completely from these panne/pool complexes during low tide. During post-restoration monitoring however, all three of the study areas contained water and were sampled for this parameter. Nekton sampling locations were selected randomly along the perimeter of the Experimental and Control pools at eight locations in the Control Pool and five locations in each Experimental Pool. The approximate sampling locations were recorded using a GPS unit and transferred into a GIS for overlay onto an aerial photograph of the marsh (Figure 2).

2.2.4 Mosquito Sampling

Mosquito sampling was conducted to address the public interest in determining whether marsh restoration activities appear to be increasing suitable breeding habitat for mosquitoes. Prerestoration mosquito sampling was conducted on three separate occasions during low tide conditions in August and September 2003. Post-restoration mosquito sampling was conducted in July, August, and September 2006 (Year 2)², July and September 2007 (Year 3), and July, August, and September 2009 (Year 5).

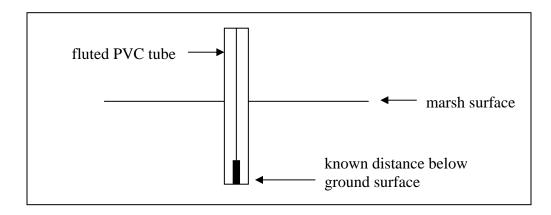
Mosquito sampling was conducted by using a triangular Wildco[®] Indestructible Dip Net. The dip net consists of an 800 x 900 micron (μ m) multifilament nylon netting. Dip net sampling was conducted by sweeping the dip net at random transects of the pannes/pools. Sampling was conducted at 10 locations in or around the Control Pool and Experimental Pool 2, and at eight locations in or around Experimental Pool 1³ Each location was swept three times to determine the presence and/or absence of mosquito larvae and relative abundance (i.e., None, Few, Common, or Many). The sampling locations were recorded using a GPS unit and transferred into a GIS for overlay onto an aerial photograph of the marsh (Figure 2).

2.2.5 Photographic Documentation

Photographic stations were established at locations around each of the three monitoring areas in order to visually document marsh surface conditions and enable comparisons between pre-restoration and post-restoration marsh surface conditions. Pre-restoration photographs were taken in August 2003, and post-restoration photographs were taken in August 2006 (Year 2) and August 2009 (Year 5).

Photographic stations were established during the 2003 pre-restoration field season at six locations across the site (Figure 2). Panoramic photographs were taken at low tide during a spring tide cycle at each photo station. The photographer noted the date and approximate compass direction of each photo. Photographic station locations were recorded using a GPS unit and transferred into a GIS for overlay onto an aerial photograph of the marsh (Figure 2).

2.3 WATER LEVEL MONITORING


Water level (i.e., tidal signal) monitoring was conducted to determine the depth of flooding and duration of inundation in the three monitoring pools (i.e., Control Pool, Experimental Pool #1, and Experimental Pool #2), and allow a basic evaluation of change between pre-restoration and Year 2 (i.e., 2006) post-restoration conditions. Data were collected continuously over a minimum 4-week period consisting of one full lunar cycle of two spring and two neap tides. Water level was measured using Global Water Model WL15 pressure transducer/data loggers (Global Water 2001). Water level monitoring data loggers were placed so that the pressure-

² As previously mentioned, two additional rounds of mosquito sampling were conducted in July and September 2007 to supplement the data collected during Year 2 post-restoration monitoring.

³ There were five sample locations within Experimental Pool 1, and only three pools identified in the vicinity of Experimental Pool 1 that could be sampled for mosquitoes.

sensitive probe tip was located at a known distance below the marsh surface within a fluted PVC pipe to capture data on the height of the water column above the pressure-sensitive probe tip and the duration of inundation, as shown in Figure 3.

Figure 3. Surface and Ground Water Sampling Data Recorder Set-up for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine..

Pre-construction water level monitoring was conducted during July and August, 2003. Post construction water level monitoring was conducted during July through September, 2006 (Year 2). The water level monitoring station at Experimental Pool #2 had to be reestablished because the PVC pipe had been destroyed; the replacement station was installed at a new location closer to the edge of the pool to accommodate safety concerns at the old location, which under post-restoration conditions was located in deep muck and permanent water. No water level monitoring was conducted during Year 5 post-restoration monitoring. Sampling station locations were recorded using a GPS unit and transferred into GIS for overlay onto Figure 2.

2.4 WATER QUALITY

2.4.1 Nutrient Load Analysis

Water samples were collected in order to characterize the nutrient load in runoff from developed upland areas along the northwest perimeter of the marsh. Surface water samples were collected twice during low tidal periods in August and September 2003. Sampling was conducted at five fixed locations along the marsh perimeter and significant channel intersections in order to characterize the nutrient load in runoff from developed upland areas along the northwest perimeter of the marsh (Figure 2). Water samples were collected in sterilized sample bottles for laboratory analysis. Samples were analyzed by Katahdin Analytical Services, in Westbrook, Maine, and analyzed for nitrate/nitrites, ammonia, total Kjeldahl nitrogen (TKN), total phosphorus, and total suspended solids.

2.4.2 Additional Water Quality Analysis

Following completion of initial pre-restoration water quality activities in 2003, the USFWS identified eight sampling locations for additional water quality analysis in order to understand the potential toxic effect of the runoff constituents and the potential filtration function being performed by the marsh (Figure 2). Three of these sampling locations (i.e., MB-1, MB-3, and MB-5) are located at culverts that drain under the Old Eastern Road, and contain runoff from residential areas and the Willowdale Golf Course. The remaining five sampling locations are located down-gradient from sampling locations MB-1, MB-3, and MB-5.

The water quality analysis was designed to evaluate the composition of runoff from upland areas along the northwest perimeter of the marsh, after filtration by the marsh, and as it moves downstream, through Mill Brook, mixing with tidal water. Water samples were analyzed for sediment, calcium, magnesium, hardness; the 13 United States Environmental Protection Agency (USEPA) Priority Pollutants (i.e., Sb, As, Be, Cd, Cr, Tl, Zn, Cu, Pb, Hg, Ni, Se, and Ag); and, fecal coliform bacteria. Analysis of water samples was divided into a general water quality analysis and fecal coliform analysis.

Water Quality Analysis

Water samples were collected at eight sample locations (Figure 2) on August 3, August 12, and September 16, 2004. Dry weather conditions were observed leading up to the August 3 and September 16 sampling events. The August 12 sampling event was following a >0.5 inch rain event in the watershed. All water samples were collected during an outgoing tide; samples collected during the August 12 event were collected approximately 1–3 hours after high tide, and samples collected during the August 3 and September 16 events were collected during an outgoing low tide.

Water samples were collected in sterilized sample bottles for laboratory analysis by Katahdin Analytical Services, in Westbrook, Maine, and analyzed for total suspended solids, calcium, magnesium, the USEPA Priority Pollutants, and hardness. Results were analyzed with the assistance of Woodard & Curran, of Portland, Maine.

Fecal Coliform Analysis

Water samples were collected in sterile Whirl-Pak bags for fecal coliform analysis on August 3, August 12, and September 16, 2004. Water samples were collected and analyzed within 24 hours by the Maine Department of Marine Resources (DMR), Shellfish Sanitation Program Laboratory, in West Boothbay Harbor, Maine. These results were analyzed with the assistance of the DMR, Shellfish Sanitation Program staff.

2.5 ADDITIONAL PROJECT INFORMATION

Field notes were recorded during field sampling activities, and list of species observed during field sampling activities was maintained during each year of monitoring. Species observations collected during monitoring activities are anecdotal observations, and are intended to provide additional information, and do not represent qualitative data collection. Additionally, these data are collected by individuals with a range of expertise in the identification of birds and wildlife,

and therefore represent only a partial list of the species that may actually be using the Project area.

3.0 RESULTS AND DISCUSSION

This section describes the results collected during pre- and post-restoration monitoring, and discusses these results and potential causes contributing to the changes observed. In order to evaluate environmental impacts over time, but incorporate some sense of whether any changes are due to natural variability or due to the restoration activities, the Before-After, Control-Impact (BACI) study design was used. Data were collected at two Experimental Pools (Experimental Pool #1 and #2) and one Control Pool, and were collected before and after the restoration activities were implemented. Statistical analysis also was performed on the vegetation, nekton, and mosquito data sets, as described in the following sections, in order to reveal trends and determine the statistical significance of any observable changes.

Statistics were used to evaluate the data in several ways. In each case, the data was not assumed to be normal. For comparisons of two independent groups that are nonparametric, the Wilcoxon Rank Sum test (also known as the Mann-Whitney U test), 2-sample test with normal approximation, was used. The Kruskal-Wallis nonparametric one-way analysis of variance (ANOVA), Chi-square approximation, was used when the data were compared in groups of more than two. Additionally, the Tukey-Kramer HSD (honestly significant difference) test was used to compare group means. Tukey-Kramer HSD uses an adjusted *t test* to perform a modified comparison of means to control for error, and protects from falsely declaring two means significantly different (Sall and Lehman 1996).

3.1 COVER TYPE MAP

During pre-restoration monitoring, three primary vegetated wetland communities were differentiated and mapped. Unique wetland communities included *Spartina alterniflora*-dominated herbaceous saltmarsh, *Spartina patens*-dominated herbaceous saltmarsh, and *Juncus gerardii*-dominated herbaceous saltmarsh. A *Spartina alterniflora/Spartina patens* mixed community was identified as the dominant community. Some small areas of *Phragmites australis*, an invasive plant community, also were identified and mapped. The pool/channel community type includes the Control Pool, and Experimental Pool #1 and #2, although the Experimental Pools drained to mudflat at lowtide.

The post-restoration cover type map focused on changes that were in the vicinity of the monitoring efforts around the Control Pool and Experimental Pools, which is shown in detail on the Year 5 post-restoration cover type map (Appendix A). In addition to the unique wetland communities identified during pre-restoration activities, three small community types were identified during post-restoration monitoring: a *Typha* species community, a mixed vegetation community, and a panne community. Each of these new communities made up 0.2% or less of the area, and represented an overall decrease, or conversion, from the *Spartina alterniflora* or *Spartina alterniflora/Spartina patens* communities in the vicinity of the monitoring activities.

The *Typha* species community is located along the western boundary of the area of detail, and is located upgradient from ditch plug activities on the western side of the channel. The

development of this community may be the result of pooling freshwater along the wetland boundary that is no longer able to drain from the marsh with the construction of the ditch plug near to these communities.

The panne community is located west of pool that is located between the Control Pool and Experimental Pool #1, and east of ditch plug activities where the new *Phragmites* communities have become established. It is possible that with the increase in groundwater levels resulting from ditch plugging activities, the *Spartina alterniflora* community experienced reduced aerobic restoration by the roots, and subsequently died off, creating panne habitat. However, this theory has not been confirmed.

The mixed community is a very small polygon located in the area where ditch plugging activities occurred for Experimental Pool #1, and had no clear dominant species. It is possible that the material placed for creation of the ditch plug in this location had a more diverse seed bank, and provided opportunity for less dominant species to take hold on the marsh in this location.

The cover type maps indicated that the pool/channel community around the Experimental Pools increased slightly from pre-restoration to post-restoration conditions. However, the true increase in permanent pool habitat is greater than what is reflected in Table 1, since the pre-restoration cover type did not differentiate between the pool and low tide mudflat habitat conditions present in the Experimental Pools at the time of pre-restoration activities. The Experimental Pools now provide permanent pool habitat as a result of the restoration work. Pre-restoration and Year 5 post-restoration cover type maps are included in Appendix A.

Community Type		Pre-Restoration (percent)		Restoration ercent)	Change (percent)
	Acres	Percentage	Acres	Percentage	
Spartina alterniflora	14.9	11.9%	13.9	11.1%	-0.8%
Spartina alterniflora /Spartina patens	65	51.9%	64.5	51.5%	-0.3%
Spartina patens	2.2	1.8%	2.7	2.2%	+0.4%
Juncus gerardii	0.9	0.8%	1.3	1.0%	+0.2%
Typha species		0%	0.3	0.2%	+0.2%
Mixed Community		0%	< 0.1	<0.1%	+<0.1%
Phragmites australis	< 0.1	< 0.1%	0.1	0.1%	+0.1%
Pool/channel	26.9	21.5%	27.0	21.6%	+0.1%
Panne		0%	0.2	0.2%	+0.2%
Upland Forest	15.2	12.2%	15.2	12.2%	0%
Total of All Cover Types	125.1	100%	125.1	100%	

Table 2. Approximate Percent Area Change of Community Types Pre-RestorationCompared to Year 5 Post-Restoration Monitoring for the Mill Brook Salt MarshRestoration Monitoring Project, Scarborough, Maine.

3.2 SITE EVALUATION

The site evaluations were used to compare observations of pre-restoration conditions with postrestoration conditions on the marsh surface. The site evaluation included completing a site assessment, vegetation monitoring, nekton sampling, and mosquito sampling (Appendix B), and photographic documentation of pre- and post-restoration site conditions (Appendix C).

3.2.1 Site Assessment

Site assessment observations, comparing pre-restoration and post-restoration conditions are summarized below. See Appendix B for the completed site assessment forms.

- Pre-restoration site assessment revealed poor hydrologic conditions in the two pools identified for ditch plugging restoration work, including inadequate water retention in the pools and lack of nekton habitat. No undesirable plant species were present in the vicinity of the monitoring areas, however some *Phragmites australis* was present along the marsh margins outside of the monitoring area and was noted in the cover type map. Desirable plant species that were present in the monitoring area include *Spartina patens, Spartina alterniflora*, and *Juncus gerardii*.
- During the Year 2 site assessment, the pools and ditch plugs were evaluated for growth of desirable species, plant health/vigor, obvious loss of aerial coverage or plant density, and evidence of water flow or leakage. In general, all the ditch plugs around the Experimental Pools were structurally sound, and had revegetated with desirable species. However, the plywood used in creating the ditch plug was exposed at each of the ditch plugs, by as much as 6-inches. There were some new minor drainage channels that had formed around the ditch plugs, but these were not anticipated to compromise the stability or soundness of the ditch plugs.
- Based on the final site assessment conducted in Year 5 post-restoration, the ditch plugs (Ditch Plugs #1, 1A, 2, and 12) were no longer discernable from the surrounding marsh, and there was no obvious evidence of the plywood used in creating the ditch plugs. The ditch plugs had revegetated with desirable species, and no invasive species were present. As noted during the Year 2 site assessment, the minor drainage channels that had formed around the ditch plugs were still present, but these did not appear to be compromising the stability, function, or soundness of the ditch plugs.
- The pools excavated to provide material to create the ditch plug were difficult to discern from natural pools, but where possible or believed to be present, the excavated pools appeared to be stable, support fish populations, had intact edges and were retaining water, and had apparent water quality that was typical of a salt marsh pool. Both of the Experimental Pools, which are now permanent pools, appeared to have increased in aerial extent from pre-restoration high tide conditions. The Experimental Pools appeared to have stable edges, were observed to support fish and nekton, and appeared to have adequate water quality.
- Natural pools and pannes appear to be stable, with typical conditions and species present. There appeared to be some additional panne habitat west of Experimental Pool #1 in the area east of Ditch Plugs #3A and 3B that may be associated with increased groundwater levels behind those ditch plugs.

- Undesirable species presence has increased slightly from pre-restoration conditions:
 - *Phragmites* was observed, as noted on the cover type map, in association with the Ditch Plugs #3A and 3B.
 - *Typha* was also observed at the upper edge of the marsh in the vicinity of Ditch Plug #31, as noted on the cover type map.
- Desirable species appear healthy and vigorous, and not decreasing in cover, with the exception of the minor addition of undesirable species, as noted on the cover type map.

3.2.2 Vegetation Monitoring

Control Pool – Pre-restoration (i.e., 2003) conditions of the vegetative community in the vicinity of the Control Pool were variable. The plot closest to the center of the pool for each transect was originally placed in pool/panne habitat, and these plots were dominated by bare ground (55–100%). Vegetative communities moving outward from the pool center, between 10 and 30 m, varied in composition but two species, saltwater cordgrass (*Spartina alterniflora*) (10–55%) and salt hay grass (*Spartina patens*) (2–95%), and a variety of other species to a lesser degree.

In Year 5 (i.e., 2009) post-restoration, the bare ground coverage in the first two plots of the Control Pool transects increased, with only two of the first two plots along the transect having less than 42% bare ground coverage. Overall the amount of bare ground appeared to have increased post-restoration in the vicinity of the Control Pool, compared to pre-restoration conditions.

Experimental Pool 1 – Pre-restoration conditions of the vegetative community in Experimental Pool #1 varied with distance from the pool. Similar to the Control Pool, the plots closest to the pool center were predominantly bare ground (55–95%), and vegetative communities moving outward from the pool between 10 and 30 meters from the first plot were composed of salt hay grass (5–100%) and saltwater cordgrass (1–90%). Detritus coverage ranged from 5–75% in these areas. The vegetative communities furthest from the pool (30–50 m) were composed of black grass (10–99%), salt grass (*Distichlis spicata*) (3–45%), and saltwater cordgrass (5–85%).

In Year 5 Post-restoration vegetative monitoring, the bare ground coverage increased in Experimental Pool #1 in the vegetation plots up to approximately 30 meters from the first plot along each transect as compared to pre-restoration conditions. This appears to be the result of the pool increasing in size with the restoration of permanent pool habitat. The vegetative coverage moving further from the pool center was dominated by a mix of saltwater cordgrass (35–80%) and salt hay grass (1–95%), and salt grass (5–99%) was also commonly present in the areas furthest from the pool center.

Experimental Pool 2 – Pre-restoration conditions of the vegetative community in Experimental Pool #2 varied with distance from the pool. Similar to the Control Pool, the plots closest to the pool center were predominantly bare ground (60–98%). Vegetative communities between 10 m and 30 m from the first plot were covered with varying percentages of saltwater cordgrass (1–80%) and salt hay grass (5–99%). The furthest plots, greater than 30 meters from the pool center were made up of a more diverse species compositions, which included black grass (35–80%),

salt grass (5-30%), and salt hay grass (5-90%). Detritus was also present in each of these plots and varied in coverage (10-35%).

In Year 5 Post-restoration vegetative monitoring, the extent of Experimental Pool #2 observably expanded, resulting in an increase in bare ground (i.e., in this case non-vegetated pool habitat) in the plots located up to 30 meters from the first plot. In vegetation plots located further from the pool center, vegetative coverage was dominated by a mix of saltwater cordgrass (2–81%) and salt hay grass (1–75%).

Statistical Analysis

Vegetation data were collected pre-restoration and in Year 5 post-restoration at five plots positioned along five transects located around each the Control Pool and Experimental Pools #1 and #2. Plots established pre-restoration were relocated post-restoration using sub-meter accuracy GPS. A total of 25 vegetation plots were monitored around each of the pools. Data included the following:

- Control Pool 25 pre-restoration data points, 25 post-restoration data points
- Experimental Pool 1 25 pre-restoration data points, 25 post-restoration data points
- Experimental Pool 2 25 pre-restoration data points, 25 post-restoration data points

The plot position related to the pool center was noted, with 1 for the plot located closest to the pool center, and 5 for the plot located furthest from the pool center. Data on species and percent cover were collected at each vegetation plot location. The following comparisons were conducted for (1) number of species and (2) percent vegetative cover:

- Compare (1) and (2) by plot position.
- Compare (1) and (2) by study area and year. (i.e., Control, Experimental #1, Experimental #2, for pre- and post-restoration)
- Compare (1) and (2) for Control to Control in each year.
- Compare (1) and (2) for Experimental Pool #1 to itself in each year.
- Compare (1) and (2) for Experimental Pool #2 to itself in each year.
- Compare (1) and (2) for each study area to the others in pre-restoration (i.e., 2003).
- Compare (1) and (2) for each study area to the others in Year 5 post-restoration (i.e., 2009).

Based on the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation, the number of species and the percent vegetative cover comparison by plot positions were significantly different (probability <0.0001). The Tukey-Kramer HSD adjusted *t test* comparison indicate that there was a significant difference between the number of species and percent vegetative cover at plot position 1, and no significant difference between each of the other plot positions.

Comparisons of the number of species by study area and year, revealed a significant difference in number of species in vegetation plots (p=0.0002). The Tukey-Kramer HSD adjusted *t test*

comparison between study area and year indicates that number of species in vegetation plots prerestoration at the Experimental Pool #2 was significantly higher than in any of the Control plots or than post-restoration conditions in vegetation plots at Experimental Pools #1 or #2, and indicate that number of species in vegetation plots pre-restoration at the Experimental Pool #1 was significantly higher than in post-restoration conditions in vegetation plots at Experimental Pools #1 or #2. There was no significant change in the number of species in vegetation plots at the Control Pool pre-restoration compared to post-restoration, indicating that the significant differences observed at the Experimental Pools are attributable to restoration activities. Results of statistical analysis are summarized in Table 3 and presented in Appendix E.

Data on percent vegetative cover by study area and year revealed a similar trend, with a significant difference in the percent vegetative cover in vegetation plots (p=0.0005). The Tukey-Kramer HSD adjusted *t test* comparison between study area and year indicates that percent vegetative cover in plots pre-restoration at both Experimental Pools was significantly higher than in any of the Control plots or than post-restoration conditions in vegetation plots both Experimental Pools. There was no significant change in the number of species in vegetation plots at the Control Pool pre-restoration compared to post-restoration, indicating that the significant differences observed at the Experimental Pools are attributable to restoration activities. Also of note, restoration activities appear to have had some influence on a decrease in percent vegetative cover in the Control Pool plots, however these differences were not significant. Results of statistical analysis are summarized in Table 4 and presented in Appendix E.

Interpretation

Results for comparisons of number of species and percent vegetative cover by study area and year indicate that there was a higher diversity of species and more dense vegetative cover at both the Experimental Pools during pre-restoration, and that the post-restoration response is a decrease in diversity (i.e., number of species) and overall vegetative cover (i.e., percent cover) in the marsh surrounding these pools. Although the data on number of species indicate that species diversity remains higher post-restoration at the Experimental Pools as compared to the Control Pool, there is not a significant difference between these. Based on this and the results on change in percent vegetative cover, it appears that the marsh is trending towards conditions that are more similar to conditions in the vicinity of the Control Pool, or presumably more natural marsh conditions, and that these changes are attributable to restoration activities.

Table 3. Mean Number of Species in Vegetation Plots for the Mill Brook Salt MarshRestoration Monitoring Project, Scarborough, Maine.

	Pre = 2003		Yr 5	Post = 2009	Probability
	# Mean		#	Mean	
Control	25	2.12 abd	25	1.76 abd	0.3371
Experimental Pool #1	25	2.96 abc	25	1.64 ad	0.0187*
Experimental Pool #2	25	3.60 bc	25 1.60 ad		0.0002*
Probability	0.0115*			0.9569	0.0002*

Note: Different letters indicate significant differences in mean number of species observed. * indicates a significant difference.

	Pre = 2003		Yr 5	Post = 2009	Probability
	#	Mean	#	Mean	
Control	25	59.08 abc	25	36.32 ac	0.0556
Experimental Pool #1	25	75.44 abc	25	47.92 ab	0.0115*
Experimental Pool #2	25	73.36 abc	25	45.92 ab	0.0088*
Probability	0.1128			0.8063	0.0005*

 Table 4. Mean Percent Cover in Vegetation Plots for the Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine.

Note: Different letters indicate significant differences in mean percent vegetative cover observed. * indicates a significant difference.

3.2.3 Nekton Sampling

Control Pool – Nekton monitoring results for the Control Pool indicate that number of nekton species were relatively consistent (i.e., between 2 and 4 species) at each monitoring point prerestoration (i.e., 2003) and in Year 5 (i.e., 2009) post-restoration, and were generally lower (i.e., between 0 and 1, with one monitoring point with 3 and one monitoring point with 4 species) during Year 2 (i.e., 2006) post-restoration.

Fish abundance for the Control Pool pre-restoration was very high during the August sampling event, but no fish were caught during the September sampling event. During the Year 2 post-restoration sampling events, only three adult mummichog and four larval fish were caught in the Control Pool. For the Year 5 post-restoration sampling events, the results for the August sampling event were similar to the event from August during pre-restoration sampling, and the results for the October sampling event were similar to the 2006 sampling results for the Control Pool. The results for the Control Pool indicate that fish abundance can be highly variable. Nekton sampling data forms are presented in Appendix B.

Experimental Pool #1 and #2 – During pre-restoration nekton sampling, the Experimental Pool #1 and #2 completely drained during low tide, and therefore could not support fish throughout a full tide cycle. During post-restoration monitoring, both Experimental Pool #1 and #2 provided permanent pool habitat throughout the tidal cycle, and fish and invertebrates were collected from each pool. Post restoration nekton sampling revealed that number of species were higher than pre-restoration during both Year 2 and 5 post-restoration. However, number of species observed during Year 2 post-restoration monitoring (i.e., between 0 and 2 species, with two monitoring points with 3 species) was generally lower than during Year 5 post-restoration (i.e., between 1 and 3 species, with one monitoring point with 0 species and one monitoring point with 4 species).

Post restoration nekton sampling also revealed that fish abundance had steadily increased in Experimental Pool 2 from pre-restoration to Year 5 post-restoration. Fish species diversity also increased with the presence of two new fish species, the Atlantic silverside (*Menidia menidia*) and a stickleback species (*Gasterosteidae* spp.), that were captured in Experimental Pool 2

during post-restoration nekton sampling. Larval fish were also collected during Year 2 postrestoration sampling events in Experimental Pool 1 and the Control Pool, which may possibly be attributed to sustaining fish populations in the pools.

Statistical Analysis

Nekton data were collected pre-restoration and in Year 2 and Year 5 post-restoration at eight locations in the Control Pool and five locations in each Experimental Pool #1 and #2. Data were collected during two different sampling events during each monitoring year. Data included the following:

- Control Pool 16 pre-restoration data points, 32 post-restoration data points
- Experimental Pool 1 10 pre-restoration data points, 20 post-restoration data points
- Experimental Pool 2 10 pre-restoration data points, 20 post-restoration data points

The following comparisons were conducted for (1) number of nekton species (i.e., includes fish and invertebrates) and (2) fish abundance:

- Compare (1) and (2) by study area and year (i.e., Control, Experimental #1, Experimental #2, for pre- and post-restoration).
- Compare (1) and (2) by study area and year with pooled Experimental Pool data.
- Compare (1) and (2) by study area and year with pooled Experimental Pool data and with pre-restoration Experimental Pool data removed.
- Compare (1) and (2) for Control to Control in each year.
- Compare (1) and (2) for Experimental Pool #1 to itself in each year.
- Compare (1) and (2) for Experimental Pool #2 to itself in each year.
- Compare (1) and (2) for each study area to the others in pre-restoration (i.e., 2003).
- Compare (1) and (2) for each study area to the others in Year 2 post-restoration (i.e., 2006).
- Compare (1) and (2) for each study area to the others in Year 5 post-restoration (i.e., 2009).

Based on the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation, the comparisons of the number of nekton species identified by study area and year, revealed a significant difference (p<0.0001). The most interesting results from the Tukey-Kramer HSD adjusted *t test* comparison between study area and year indicate that there was a significant difference between the pre-restoration data for both the Experimental Pools and all other data except for Experimental Pool #1 Year 2 (i.e., 2006), and that the number of nekton species for the Control Pool pre-restoration did not significantly differ from the Year 5 (i.e., 2009) post-restoration data for Year 2 was relatively low for all study areas compared to the Control Pool pre-restoration and to all sites Year 5 post-restoration. The mean number of nekton species by location and year is summarized in Table 5 and presented in Appendix E.

	Pre = 2003		Yr 2 Post = 2006			Yr 5 Post = 2009	Probability
	#	Mean	#	Mean	#	Mean	
Control	16	2.4375 acfg	16	1.375 befg	16	2.6875 acg	0.0008*
Experimental Pool #1	10	0^1 de	10	1.1 bdefg	10	2.2 abcefg	0.0002* (0.0317*)
Experimental Pool #2	10	0^1 de	10	1.4 abefg	10	2.0 abcefg	0.0001* (0.3228)
Probability	<	0.0001*		0.7235		0.2798	< 0.0001*

 Table 5. Mean Number of Nekton Species for the Mill Brook Salt Marsh Restoration

 Monitoring Project, Scarborough, Maine.

Note: ¹Pool did not hold water at low tide; no sample collected.

Probability in () represents probability without pre-restoration sampling event.

Different letters indicate significant differences in mean number of nekton species observed.

* indicates a significant difference.

Statistical comparisons were assessed between study areas (i.e., Control, Experimental #1, Experimental #2) and year (i.e., pre-restoration, Year 2, and Year 5) based on the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation. There were significant differences in the number of nekton species at the Control Pool Year 2 compared to either pre-restoration or Year 5 post-restoration (p=0.0008), at Experimental Pool #1 between all years (p=0.0002), and at Experimental Pool #2 pre-restoration compared to both post-restoration sampling events (p=0.0001). Also, the number of nekton species pre-restoration were significantly different between the Control Pool and both the Experimental Pool #1 and #2 (p<0.0001), and there was no significant difference between any site in Year 2 (p=0.7235) or Year 5 (p=0.2798) post-restoration. These data were supported by the results from the Tukey-Kramer HSD adjusted *t test*.

Results for fish abundance based on the Kruskal-Wallis nonparametric one-way ANOVA, Chisquare approximation, revealed a significant difference in the abundance of fish by study area and year (p=0.0025). In particular, the abundance of fish in the Control Pool pre-restoration was significantly different than in the Control Pool in Year 2 post-restoration, however neither data set had significantly different fish abundance than any other location or year. The mean fish abundance by location and year is summarized in Table 6 and presented in Appendix E.

Additional specific comparisons were evaluated by location (i.e., Control Pool, Experimental Pool #1, and Experimental Pool #2) and year (i.e., pre-restoration, Year 2, and Year 5). The results using Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximations are included in Table 6, below. However, to protect from falsely declaring significance, only the Tukey-Kramer HSD adjusted *t test* results are discussed here. The comparison between monitoring years reveal significant differences in fish abundances for the Control Pool pre-restoration and Year 2 post-restoration (p=0.0269), and Experimental Pool #2 Year 5 post-restoration and both pre-restoration and Year 2 post-restoration (p=0.0363). There were no significant differences at any site in comparisons of data by year (i.e., pre-restoration, Year 2, and Year 5).

	Pre = 2003		Yr 2 Post = 2006		Yr 5 Post = 2009		Probability
	#	Mean	#	Mean	#	Mean	
Control	16	5.5625 a	16	0.375 b	16	1.875 ab	0.0269*
Experimental Pool #1	10	0^1 ab	10	3.0 ab	10	0.2 ab	0.0065* (0.0438*)
Experimental Pool #2	10	0^1 ab	10	1.0 ab	10	3.8 ab	0.0363* (0.4076)
Probability	().0055*		0.0194*		0.1692	0.0025*

Table 6. Mean Fish Abundance for the Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine.

Note: ¹Pool did not hold water at low tide; no sample collected.

Probability in () represents probability without pre-restoration sampling event.

Different letters indicate significant differences in mean fish abundance observed.

* indicates a significant difference.

Interpretation

Data on number of nekton species indicate that the Experimental Pools have recovered postrestoration in terms of providing nekton habitat, and are approaching the number of species captured in the Control Pool pre-restoration and in Year 5 post-restoration. The statistically significant difference between the number of species captured in the Control Pool pre-restoration and in Year 5 post-restoration as compared to in Year 2 post-restoration indicate that some other factors may have resulted in a reduced presence of nekton in the pools in 2006. Although, the variability in the nekton data for the Control Pool do decrease the strength of these results, it is clear that some recovery of nekton has occurred as a result of restoration activities, since the prerestoration conditions did not support any nekton at low tide in either Experimental Pool #1 or 2, and post-restoration conditions do provide nekton habitat.

Results for fish abundances indicate that fish abundance is variable, and no clear patterns present themselves between years or study areas. However, it is clear that fish abundance at the Experimental Pools has increased post-restoration compared to pre-restoration, since the pre-restoration conditions did not support any fish at low tide in either Experimental Pool #1 or 2, and post-restoration conditions do provide some habitat for fish.

3.2.4 Mosquito Sampling

Control Pool – In the Control Pool for pre-restoration (i.e., 2003) and Year 2 (i.e., 2006) and Year 5 (i.e., 2009) post-restoration, mosquito dip net results were relatively similar, with the majoring (>50%) of stations having no (i.e., None) mosquito larvae, a few containing Few (1–20) individuals, and a few containing Common (20–40) or Many (>40) individuals at a dip net station. Year 3 (i.e., 2007) post-restoration mosquito sampling results were markedly different from the other years, with 50% of the stations having Many mosquito larvae, and the remainder having Few or Common, with no stations reporting "None" for mosquito larvae. Mosquito dip count data forms and figures summarizing data are presented in Appendix B.

Experimental Pool #1 – Pre-restoration and Year 2 and Year 5 post-restoration mosquito dip net sweeps in Experimental Pool #1 showed a similar pattern to the Control Pool, with no mosquito larvae collected at the majority (>81.25%) of stations and a small number (<12.5%) of stations having Few, Common, or Many mosquito larvae. Again, Year 3 post-restoration results were substantially different from the other years, with 50% of sites having Many mosquito larvae.

Experimental Pool #2 –. Pre-restoration and Year 2 and Year 5 post-restoration mosquito dip net sweeps in Experimental Pool #2 also showed a similar pattern to the Control Pool and Experimental Pool #1, with no mosquito larvae collected at the majority (>77.5%) of stations and a small number (<17.5%) of stations having Few, Common, or Many mosquito larvae. Again, Year 3 post-restoration results were substantially different from the other years, with 35% of sites having Few or Many mosquito larvae, and 15% of sites having None or Common mosquito larvae.

Statistical Analysis

Mosquito data were collected at 10 sites around or in the Control Pool, on four different days pre-restoration, and collected data at eight sites around or in Experimental Pool #1 and 10 sites around or in Experimental Pool# 2 for a total of nine separate events post-restoration (3 in 2006, 2 in 2007, 4 in 2009). Data included the following:

- Control Pool 40 pre-restoration data points, 90 post-restoration data points
- Experimental Pool 1 32 pre-restoration data points, 67 post-restoration data points
- Experimental Pool 2 40 pre-restoration data points, 85 post-restoration data points

Mosquito data were considered to be categorical, ordinal (i.e., ranked) variables, in which the categories were ordered based on a numerical scale. A numeric score was assigned to each category based on the number of mosquito larvae observed at each sweep site: 0 for 0 mosquito larvae; 1 for few (1–20) mosquito larvae; 2 for common (21–40) mosquito larvae; and, 3 for many (>40) mosquito larvae.

The following comparisons were conducted:

- Compare Control to Control in each year.
- Compare Experimental Pool #1 to itself in each year.
- Compare Experimental Pool #2 to itself in each year.
- Compare each study area (i.e., Control, Experimental Pool #1, Experimental Pool #2) to the others in pre-restoration (i.e., 2003).
- Compare each study area to the others in Year 2 post-restoration (i.e., 2006).
- Compare each study area to the others in Year 3 post-restoration (i.e., 2007).
- Compare each study area to the others in Year 5 post-restoration (i.e., 2009).

Based on the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation, the mosquito data for the Control Pool were significantly different (p<0.0001). The Tukey-Kramer

HSD adjusted *t test* comparison between years for the Control Pool indicate that there was a significant difference between the Year 3 (i.e., 2007) data and each other year, and between Year 2 (i.e., 2006) and Year 5 (i.e., 2009) (p=0.0070). The mean number of mosquito larvae, by category (i.e., None, Few, Common, or Many) are summarized in Table 7 and presented in Appendix E.

For both the Experimental Pool study areas, the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation, revealed a significant difference in the mosquito data between years (p<0.0001). Clarifying this further, for both the Experimental Pool study areas, the Tukey-Kramer HSD adjusted *t test* comparison between years indicates that there was a significant difference between the Year 3 (i.e., 2007) data and each other year, but no significant difference between the mosquito data for any other years.

For the comparisons between study areas in each year, based on the Kruskal-Wallis nonparametric one-way ANOVA, Chi-square approximation, the mosquito data were not significantly different between the study areas in pre-restoration (i.e., 2003) (p=0.2058), Year 2 post-restoration (i.e., 2006) (p=0.1831), or Year 3 post-restoration (i.e., 2007) (p=0.3804). However, in Year 5 post-restoration (i.e., 2009), the mosquito data for the Control Pool was significantly different from both the Experimental Pool sites (p=0.0045), which was supported by the results from the Tukey-Kramer HSD adjusted *t test*.

	Pre = 2003		Yr 2 Post = 2006		Yr 3 Post = 2007		Yr 5 Post = 2009		Probability
	#	Mean	#	Mean	#	Mean	#	Mean	
Control	40	0.475 acde	30	0.2 ace	20	2.2 b	40	0.775 ad	<0.0001*
Experimental Pool #1	32	0.09375 e	19	0.0 e	16	1.875 b	32	0.28125 e	<0.0001*
Experimental Pool #2	40	0.55 de	25	0.12 e	20	1.7 b	40	0.175 e	<0.0001*
Probability	0.2058		0.1831		0.3804		0.0045*		< 0.0001*

 Table 7. Mean Categorical Number of Mosquito Larvae Observed for the Mill Brook Salt

 Marsh Restoration Monitoring Project, Scarborough, Maine.

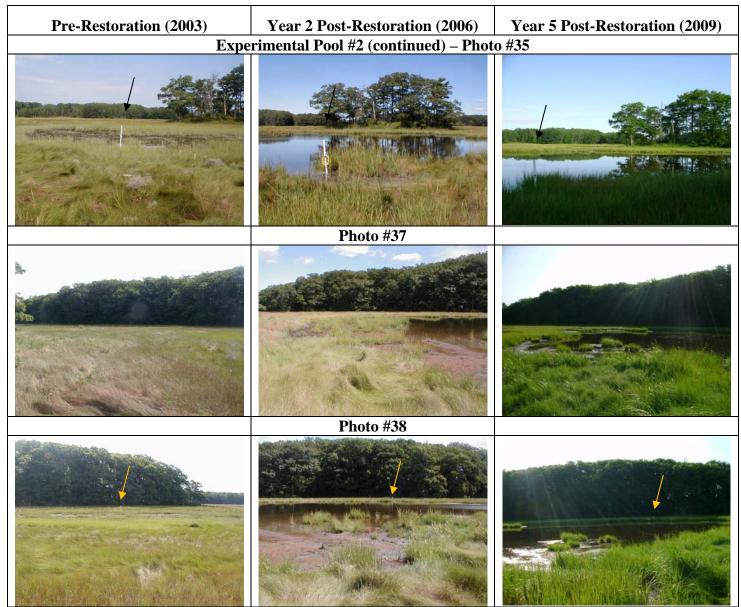
Note: Mean categorical number of mosquito larvae, where 0 is for 0 mosquito larvae; 1 is for few (1-20) mosquito larvae; 2 is for common (21-40) mosquito larvae; and, 3 is for many (>40) mosquito larvae. Different letters indicate significant differences in mean number of mosquito larvae observed. * indicates a significant difference.

Interpretation

The variability and statistically significant differences in the number of mosquito larvae observed between years at the Control Pool reduce the ability to attribute any differences observed in the data for the Experimental Pools. However, data on number of mosquito larvae indicate that 2007 was a significantly more productive year for mosquito larvae, because there was significantly higher numbers of mosquito larvae observed in and around the Control and Experimental Pool study areas in 2007 compared to each of the other years. However, the number of mosquito larvae in and around the study areas for 2007 were not significantly different between the study areas. Also, the number of mosquito larvae in and around the Control and Experimental Pool sites was significantly higher at the Control site in 2009 than in either of the Experimental Pools, and in general during post-restoration monitoring, the number of mosquito larvae at the Control Pool was higher (not always significantly) than at the Experimental Pool sites. It is possible that the proximity of the Experimental Pools compared to the Control Pool to a regular hydrology source for frequent tidal flushing and access for predatory fish that may prey on mosquito larvae would result in fewer mosquito larvae in the Experimental Pools as compared to the Control Pool, however this theory is not currently supported by enough data to be deterministic.

Mosquito larvae sampling was conducted in the main pool in each study area and around each pool in shallow pool habitat, where available for mosquito dip net sampling. Despite the potential for differences between presence and abundance of mosquito larvae in the main pool, which may support predatory fish, and the shallow pools around the main pool, these data were evaluated together for the statistical analysis. Additional statistical analyses, if conducted, may reveal trends in the presence and abundance of mosquito larvae in the main pools as compared to the adjacent shallow pools that were not revealed during this investigation.

3.2.5 Photographic Documentation


Control Pool – A comparison of the pre-restoration (i.e., 2003) photographs with the Year 2 (i.e., 2006) and Year 5 (i.e., 2009) post-restoration photographs for the Control Pool appear to indicate that there have been no substantial changes in marsh conditions or presence of pool or panne habitat for much of the area surrounding the Control Pool, with a few exceptions. For the Control Pool, photos #6, 7, and 14 show areas where some marsh vegetation has died, leaving barren panne habitat. Photo #13 does not show any appreciable change in water level in the Control Pool from pre-to post-restoration conditions (Figure 4).

Experimental Pool #1 and #2 – An examination of the photos for Experimental Pool #1 and Experimental Pool #2 also indicates that much of the marsh area surrounding the pool remains relatively unchanged from pre-restoration conditions. However, for Experimental Pool #1, photos #20 and 21 show some areas where barren vegetation observed in Year 2 post-restoration has revegetated by Year 5 post-restoration. Substantial changes in water level during an outgoing low tide were observed in Experimental Pool #1 in both Year 2 and Year 5 post-restoration, as shown in photos #27 and 28, and Figure 4, below. Additionally, substantial changes were observed in Experimental Pool 2, and can be seen in comparing the pre-restoration photos with the Year 2 and Year 5 post-restoration photograph logs for site conditions during an out-going low tide. Specifically, photos #29, 35, 37, and 38 appear to show an increase in pool size illustrated by the advancement of the pool margins over time (Figure 4). There is also an apparent decrease in the extent of vegetation observed pre-restoration in the area where permanent pool habitat has been established post-restoration. Photographic documentation of the photo stations is presented in Appendix C.

Figure 4. Comparison Photos Pre-Restoration and Year 5 Post-Restoration for Control Pool and Experimental Pool #1 and #2.

Figure 4. Comparison Photos Pre-Restoration and Year 5 Post-Restoration for Control Pool and Experimental Pool #1 and #2 (continued).

Note: Arrows point to location of water level monitoring station.

3.3 WATER LEVEL MONITORING

Control Pool – Pre-restoration water level data for the Control Pool were irregular, and do not seem to follow a traditional pattern of high and low tides. The pre-restoration and post-restoration data appear to indicate that water levels were more consistent and remained higher during the post-restoration monitoring in 2006 compared to the water levels during the pre-restoration monitoring at the Control Pool. Figures summarizing the water level data are included in Appendix D.

Experimental Pool #1 – Post-restoration water levels for Experimental Pool #1 appear to be similar to pre-restoration water levels. The exception to this is that during the third quarter of the neap tide cycle, when the tidal range is less and high tides frequently do not reach the high marsh, whereas during pre-restoration the water level in the pool would drop to below the ground surface, during post-restoration, the groundwater level did not drop below the ground surface.

Experimental Pool #2 – Post-restoration water levels for Experimental Pool #2 appear to be higher than during pre-restoration. However, it is important to note that water level data for Experimental Pool #2 are not directly comparable for pre- and post-restoration, because the water monitoring station had to be relocated for the 2006 monitoring event.

With consideration of the BACI-P experimental design at Mill Brook, the changes in water levels observed at the Control Pool (i.e., specifically more consistent and higher water level) suggest that the effects observed for Experimental Pool #1 and #2 may not be due to restoration activities, but may be due to natural variability in the Project area. However, it is possible that the Control Pool may have experienced some effects associated with the restoration activities that were not anticipated and resulted in changes to the water levels in the Control Pool similar to those observed at the Experimental Pools that were associated with ditch plugging activities.

Based on the water level monitoring data alone, the cause of changes in water levels at the Control Pool and Experimental Pool #1 and #2 are inconclusive. However, based on examination of water level data in conjunction with photographic documentation, it is clear that the water levels in Experimental Pool #1 and #2 have increased post-restoration, and the areas that formerly drained at low tide now hold water throughout the tidal cycle.

3.4 WATER QUALITY

3.4.1 Nutrient Load Analysis

The results of the nutrient load analysis were presented in Appendix B of the 2003 Pre-Restoration Monitoring Report, and are summarized in Table 8. For all sampling locations, the amount of nitrate/nitrite, ammonia, and total phosphorous in water samples ranged from undetectable to 0.01 mg/L above the adjusted practical quantitation limit. Total suspended solids ranged from 8 mg/L to 68 mg/L, and total Kjeldahl nitrogen ranged from 0.5 mg/L to 0.81 mg/L. Based on the results of the nutrient load data, the USFWS recommended that alternate water quality analysis be conducted to provide more comprehensive and specific water quality data.

		Results						Adjusted			
Parameter	8/1/03				9/12/03				Practical		
Station (NL#):	1	2	3	4	5	1	2	3	4	5	Quantitation Limit
Nitrate + Nitrite	0.05	0.05	U	U	U	U	U	0.06	0.06	U	0.050 mg/L
Nitrogen-Ammonia	U	U	U	U	U	0.1	U	U	U	0.2	0.10 mg/L
Phosphorous, Total	0.1	0.1	0.2	U	0.1	U	U	U	U	0.1	0.10 mg/L
Total Suspended Solids (TSS)	68	19	47	4	22	18	10	20	8	29	4.0 mg/L
Total Kjeldahl Nitrogen	0.7	0.6	0.7	0.81	0.6	0.5	0.6	0.5	0.7	0.6	0.25 mg/L

 Table 8. Nutrient Load Analysis Results for Mill Brook Salt Marsh Restoration

 Monitoring Project, Scarborough, Maine.

Notes: U = undetectable, below adjusted practical quantitation limit. Shading indicates actual values.

The results of the additional water quality analysis are provided in the following section, Section 3.4.2.

3.4.2 Additional Water Quality Analysis

Water Quality Analysis

Results of the water quality analysis were included in Appendix B of the 2004 Pre-Restoration Monitoring Report, and are summarized in Table 9. The questions posed in the Introduction were explored in detail in the 2004 Pre-Restoration Monitoring Report, and are not presented fully in this report. The results of the water quality analysis were based on the data collected during the three sampling events, and are summarized briefly below.

1. Is runoff likely to have a potential adverse effect?

Response: Potentially yes, particularly in the stream of MB-5 during storm events. Both acute and chronic water quality criteria for zinc were exceeded in MB-5 on August 3. Criteria for lead were also slightly exceeded in the dry-weather sample on September 16, 2004.

2. Is the marsh providing an important filtration function that should be preserved?

Response: Yes. The stream channel of MB-5 drains a golf course and appears to carry a significant silt load, with zinc concentrations over WQC, during storms. Silt is also present in the streambed of MB-3, suggesting a silt load on some occasions.

Parameter		MB-1			MB-2			MB-3			MB-4	
(mg/L)	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004
Antimony	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Arsenic	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	0.011	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Beryllium	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Calcium	3.53	4.18	3.35	156.	77.2	47.3	44.9	11.2	42.8	168.	12.6	34.1
Chromium	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150
Copper	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Lead	< 0.005	< 0.005	0.009	< 0.005	< 0.005	0.011	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Magnesium	1.76	3.15	1.57	437.	212.	116.	9.52	3.22	6.79	418.	12.0	36.2
Nickel	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Selenium	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150
Thallium	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Zinc	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Mercury	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Hardness	16.1	23.4	14.8	2190.	1070.	595.	151.	41.1	135.	2140.	80.9	234.
Solids-	8.4	4	26.	4	9.6	18.	4	22.	9.6	4.4	4	4
Nonfilterable Residue												

 Table 9. Water quality results (mg/L) for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine.

Parameter		MB-5			MB-6			MB-7			MB-8	
(mg/L)	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004	8/3/2004	8/12/2004	9/16/2004
Antimony	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Arsenic	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Beryllium	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Calcium	19.1	8.35	14.4	225.	132.	104.	217.	152.	73.6	253.	223.	113.
Chromium	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150
Copper	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Lead	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Magnesium	10.1	3.20	6.95	700.	407.	324.	675.	469.	199.	805.	660.	330.
Nickel	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Selenium	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150	< 0.0150
Thallium	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Zinc	0.106	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Mercury	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Hardness	89.1	34.0	64.4	3460.	2010.	1590.	3320.	2310.	1000.	3950.	3270	1640.
Solids-	280	6.0	7.6	4	18.	85.	39.	20.	17.	26.	27.	16.
Nonfilterable												
Residue												

Table 9. Water quality results (mg/L) for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine (continued).

Note: Shading indicates actual values.

Fecal Coliform Analysis

Results of the fecal coliform bacteria analysis were included in Appendix B of the 2004 Pre-Restoration Monitoring Report, and are summarized in Table 10. Sample locations MB-1 and MB-3 are located down-gradient from residential areas, and may provide sources of fecal coliform in runoff. MB-5 is located down-gradient of the Willowdale Golf Course. A high presence of Canada geese and a lack of a significant buffer around golf course water bodies may provide a potentially significant source of fecal coliform. Also, a review of aerial photography of the surrounding area shows additional residential development to the east of Mill Brook, providing alternative potential sources of fecal coliform to the marsh.

The questions posed in the Introduction were explored in detail in the 2004 Pre-Restoration Monitoring Report, and are not presented fully in this report. The results of the fecal coliform analysis were based on the data collected during the three sampling events, and are summarized briefly below.

1. Is runoff likely to have a potential adverse effect?

Response: Potentially, yes, particularly as part of runoff following rain events. Higher than background fecal coliform bacteria levels were found at MB-1, MB-3, and MB-5 in the wetweather sample on September 16.

2. Is the marsh providing an important filtration function that should be preserved?

Response: Yes. Fecal coliform bacteria levels at MB-2 were not greater than background during any of the sampling events, even when >1,100 fecal coliform bacteria were found at MB-1 in the wet-weather sample on September 16.

3.4.3 Water Quality Analysis Summary

Based on the results of the nutrient load analysis and the additional water quality analysis, the SMPT determined that the originally proposed ditch creation and enhancement would not be conducted. Therefore, no post-restoration nutrient load or additional water quality monitoring would be necessary. As a result no conclusions are drawn regarding the potential effects of restoration activities on water quality in the study areas.

	Number	of Fecal Colifori	n by Date
Station	3-Aug	12-Aug	16-Sep
MB-1	91	>1,100	93
MB-2	93	23	23
MB-3	130	>1,100	43
MB-4	43	>1,100	1,100
MB-5	43	240	93
MB-6	43	>1,100	93
MB-7	93	460	460
MB-8	93	43	460
Preceding			
weather	Dry	Wet	Dry
conditions			
Tide	Outgoing low	Outgoing, 1 hr	Outgoing
conditions	tide	past high tide	extreme low tide

 Table 10. Fecal Coliform Results for Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine.

Note: Shading indicates number of fecal coliform greater than background levels.

3.5 ADDITIONAL PROJECT INFORMATION

A copy of all field notes collected during field sampling activities is provided in Appendix F. In addition, Appendix G contains a cumulative list of species observed during field sampling activities. All the monitoring data to date are provided with this report on compact disc.

Page intentionally left blank.

4.0 MANAGEMENT IMPLICATIONS AND RECOMMENDATIONS

4.1 MANAGEMENT IMPLICATIONS

The management implications based on the results pre- and post-restoration monitoring activities at Mill Brook, are restated below:

Cover Type Mapping

- Cover type changes observed from pre-restoration to Year 5 post-restoration include the observation of four small communities that appear to have developed following restoration (i.e., ditch plugging) activities, including development of additional undesirable species (i.e., *Typha* and *Phragmites*), as described below.
 - A small *Typha* community was observed along the upper border of the marsh upgradient from ditch plug activities on the western side of the channel that may be the result of pooling freshwater along the wetland boundary that is no longer able to drain from the marsh with the construction of the ditch plug near to these communities.
 - A small panne community was noted west of pool that is located between the Control Pool and Experimental Pool #1, and may be the result of increased groundwater levels upgradient of ditch plugging activities resulting in reduced aerobic restoration by the roots of the *Spartina alterniflora* community, and subsequently causing die off, creating panne habitat.
 - Two small *Phragmites* communities have become established in the west of the primary monitoring activities around Experimental Pool #1, where ditch plugging activities occurred.
 - A small mixed species community was observed in the area where ditch plugging activities occurred for Experimental Pool #1, and may be the result of ditch plugging activities creating an opportunity for less dominant species to take hold on the marsh in this location.
- Additionally, the pool/channel community around the Experimental Pools was observed to have expanded post-restoration compared to pre-restoration, due to restoration activities, although the true increase in permanent pool habitat is greater than what is reflected, since the pre-restoration cover type map did not differentiate between the pool and low tide mudflat habitat conditions present in the Experimental Pools at the time of pre-restoration activities.

Site Assessment

• The site assessment supported the findings noted on the cover type map, including that both of the Experimental Pools, which are now permanent pools, appeared to have increased in aerial extent from pre-restoration high tide conditions, and appeared to have stable edges, were observed to support fish and nekton, and appeared to have adequate water quality.

Additional notations included observations of undesirable species, specifically *Typha* and *Phragmites*, as noted above.

Vegetation Monitoring

• Vegetation monitoring results for comparisons of number of species and percent vegetative cover by study area and year indicate that there was a higher diversity of species and more dense vegetative cover at both the Experimental Pools during pre-restoration, and that the post-restoration response is a decrease in diversity (i.e., number of species) and overall vegetative cover (i.e., percent cover) in the marsh surrounding these pools. Although the data on number of species indicate that species diversity remains higher post-restoration at the Experimental Pools as compared to the Control Pool, there is not a significant difference between these. Based on this and the results on change in percent vegetative cover, it appears that the marsh is trending towards conditions that are more similar to conditions in the vicinity of the Control Pool, or presumably more natural marsh conditions, and that these changes are attributable to restoration activities.

Nekton Sampling

- Nekton sampling results indicate that the Experimental Pools have recovered post-restoration in terms of providing nekton habitat, and are approaching the number of species captured in the Control Pool pre-restoration and in Year 5 post-restoration. The statistically significant difference between the number of species captured in the Control Pool pre-restoration and in Year 5 post-restoration indicate that some other factors may have resulted in a reduced presence of nekton in the pools in 2006. Although, the variability seen in the nekton data for the Control Pool do decrease the strength of these results, it is clear that some recovery of nekton has occurred as a result of restoration activities, since the pre-restoration conditions did not support any nekton at low tide in either Experimental Pool #1 or 2, and post-restoration conditions do provide nekton habitat.
- Results for fish abundances indicate that fish abundance is variable, and no clear patterns present themselves between years or study areas. However, it is clear that fish abundance at the Experimental Pools has increased post-restoration compared to pre-restoration, since the pre-restoration conditions did not support any fish at low tide in either Experimental Pool #1 or 2, and post-restoration conditions do provide some habitat for fish.

Mosquito Sampling

• The variability and statistically significant differences in the number of mosquito larvae observed between years at the Control Pool reduce the ability to attribute any differences observed in the data for the Experimental Pools. However, data on number of mosquito larvae indicate that 2007 was a significantly more productive year for mosquito larvae, because there was significantly higher numbers of mosquito larvae observed in and around the Control and Experimental Pool study areas in 2007 compared to each of the other years. However, the number of mosquito larvae in and around the study areas for 2007 were not significantly different between the study areas. Also, the number of mosquito larvae in and around the Control and Experimental Pool sites was significantly higher at the Control site in

2009 than in either of the Experimental Pools, and in general during post-restoration monitoring, the number of mosquito larvae at the Control Pool was higher (not always significantly) than at the Experimental Pool sites. It is possible that the proximity of the Experimental Pools compared to the Control Pool to a regular hydrology source for frequent tidal flushing and access for predatory fish that may prey on mosquito larvae would result in fewer mosquito larvae in the Experimental Pools as compared to the Control Pool, however this theory is not currently supported by enough data to be deterministic.

• Mosquito larvae sampling was conducted in the main pool in each study area and around each pool in shallow pool habitat, where available for mosquito dip net sampling. Despite the potential for differences between presence and abundance of mosquito larvae in the main pool, which may support predatory fish, and the shallow pools around the main pool, these data were evaluated together for the statistical analysis. Additional statistical analyses, if conducted, may reveal trends in the presence and abundance of mosquito larvae in the main pools as compared to the adjacent shallow pools that were not revealed during this investigation.

Photographic Documentation

- Photographic documentation did not reveal any substantial changes in marsh conditions or presence of pool or panne habitat for much of the area surrounding the Control Pool, with the exception of some areas where marsh vegetation has died, leaving barren panne habitat. Additionally, no appreciable change in water level was observed in the Control Pool from pre-to post-restoration conditions.
- Photographic documentation revealed substantial changes in water level during low tide conditions in Experimental Pools #1 and #2 post-restoration as compared to pre-restoration. Additionally, photographic documentation appears to indicate an increase in pool size, and a corresponding decrease in extent of vegetation, at Experimental Pool #2, in particular, as a result of restoration activities.
- Photographic documentation illustrates that this salt marsh system is dynamic and responds quickly to hydrologic changes.

Water Level Monitoring

- Based on the water level monitoring data alone, the cause of changes in water levels at the Control Pool and Experimental Pool #1 and #2 are inconclusive, and may be due to natural variability in water level, and not due to restoration activities.
- It also is possible that restoration activities may have had some effects on water levels at the Control Pool that were not anticipated, and resulted in changes to the water levels in the Control Pool similar to those observed at the Experimental Pools that were associated with ditch plugging activities.
- Based on an examination of water level data in conjunction with photographic documentation, it is clear that the water levels in Experimental Pool #1 and #2 have increased post-restoration, and the areas that formerly drained at low tide now hold water throughout the tidal cycle.

Water Quality

• No post-restoration monitoring of water quality, including nutrient load or additional water quality analysis, was conducted. As a result no conclusions are drawn regarding the potential effects of restoration activities on water quality in the study areas.

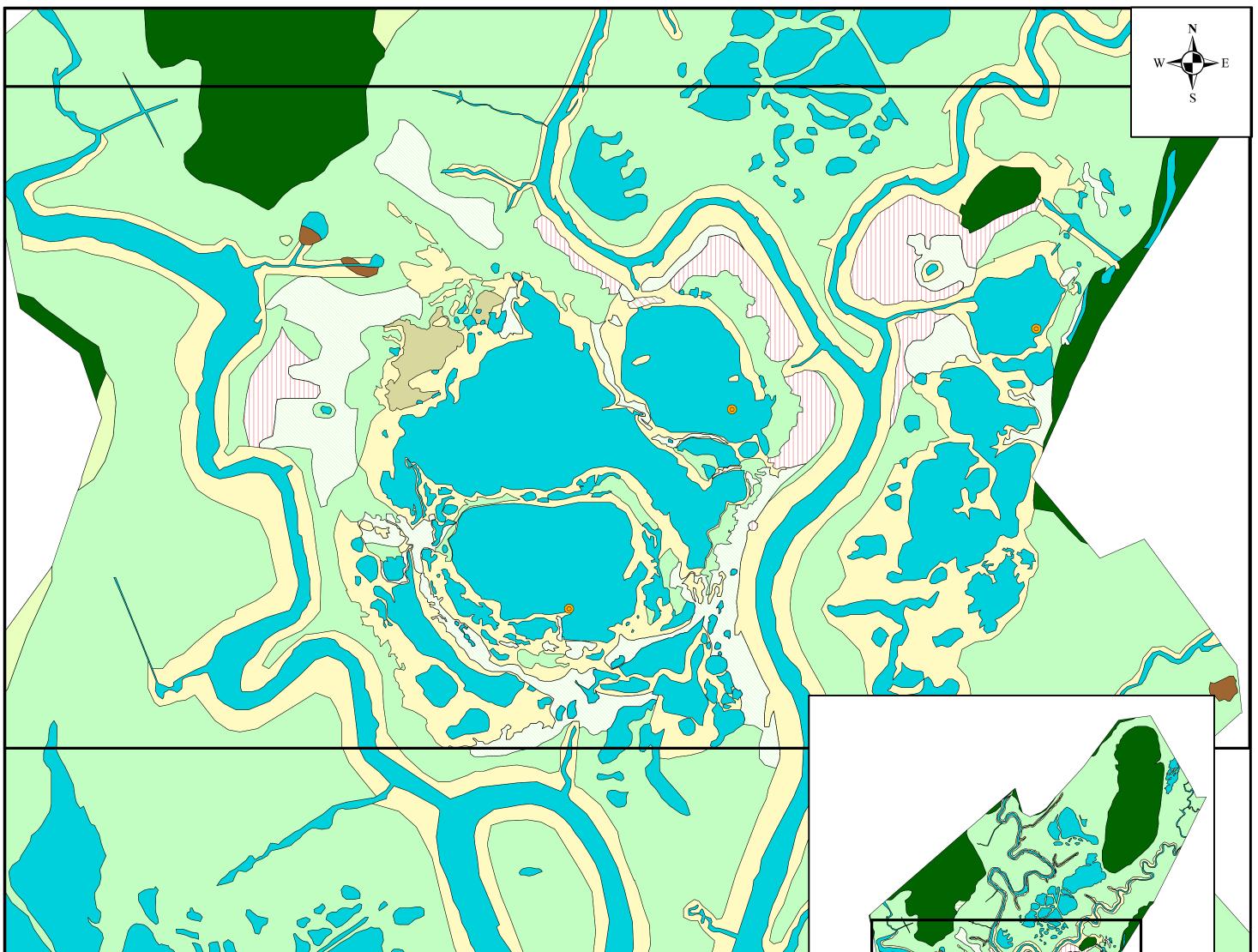
4.2 MANAGEMENT RECOMMENDATIONS

The primary Project goals were to:

- Increase the amount of pool habitat on the marsh surface to pre-ditch conditions;
- Eliminate the invasive plant *Phragmites* populations from several sections of the marsh that were formerly dominated by *Spartina patens*, and minimize the potential for *Phragmites* to re-populate the marsh.⁴

Overall, the results of cover type mapping, site assessment, vegetation monitoring, nekton sampling, photographic documentation, and water level monitoring activities at Mill Brook indicate that salt marsh restoration activities have successfully resulted in an increase in the extent of pool habitat on the marsh, re-creating pre-ditch pool conditions at Experimental Pool #1 and #2. However, additional populations of *Phragmites*, and a new population of *Typha*, have been identified since implementation of restoration activities. Based on these findings, it is recommended that monitoring of undesirable species be conducted, and if undesirable communities, particularly *Phragmites*, continue to expand, treatment could be considered to control further spread of *Phragmites* in the Project area.

⁴ The original goal to reduce pooling of freshwater on the marsh was eliminated with the elimination of the originally proposed ditch creation and enhancement.


5.0 REFERENCES

- Environmental Systems Research Institute, Inc. (ESRI). 1982. ARCInfo Geographic Information Systems Software, Version 7.1.1. ESRI, Inc., Redlands, CA.
- _____. 1996. ARCView Geographic Information Systems Software, Version 3.0. ESRI, Inc., Redlands, CA.
- Friends of Scarborough Marsh (FSM). 2003. Mill Brook Salt Marsh Pre-Restoration Monitoring Draft Data & Documentation Report. Prepared by Northern Ecological Associates, Inc., Portland, Maine, for USFWS, Falmouth, Maine, and Friends of Scarborough Marsh, Farmingdale, Maine. November 2003.
- Friends of Scarborough Marsh (FSM). 2004. Mill Brook Salt Marsh Pre-Restoration Monitoring Addendum to the Draft Data & Documentation Report – Water Quality Analysis. Prepared by Northern Ecological Associates, Inc., Portland, Maine, for USFWS, Falmouth, Maine, and Friends of Scarborough Marsh, Farmingdale, Maine. October 2004.
- Friends of Scarborough Marsh (FSM). 2006. Mill Brook Salt Marsh Year 2 Post-Restoration Monitoring Draft Data & Documentation Report. Prepared by Northern Ecological Associates, Inc., Portland, Maine, for USFWS, Falmouth, Maine, and Friends of Scarborough Marsh, Farmingdale, Maine. December 2006.
- Global Water Instrumentation, Inc. (Global Water). 2001. Gold River, CA. Model WL15 Pressure Transducer/Data Loggers.
- Raposa, K.B., and C.T. Roman. 2001. Monitoring Nekton in Shallow Estuarine Habitats. A Protocol for the Long-term Coastal Ecosystem Monitoring Program at Cape Cod National Shore. USGS Patuxent Wildlife Research Center. 33 pp.
- Sall, J, and A. Lehman. 1996. JMP Start Statistics A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. SAS Institute, Inc. Duxbury Press, New York.
- United States Fish and Wildlife Service (USFWS). 2001. Salt Marsh Restoration Monitoring Plan for Ditch-Plugging Efforts in New England Marshes. Prepared by Northern Ecological Associates, Inc., Portland, Maine, for USFWS, Falmouth, Maine. July 2001.

[PAGE INTENTIONALLY LEFT BLANK]

APPENDIX A

Cover Type Map

m	COVER TYPES	ACRES	
	Spartina alterniflora	13.86	Cover Type Map for
ALS Th	Spartina alterniflora/Spartina patens Spartina patens	64.45 2.66	Mill Brook Salt Marsh
	Juncus gerardii	1.34	Restoration Monitoring Project
	Typha species	0.32	Scarborough, Maine.
Project Location	Mixed Community	0.02	Client:
	Phragmites australis Pool/Channel	0.06 26.98	U.S. Fish & Wildlife Service
425212.5 0 425 850 Feet	Panne	0.24	
140 70 0 140 280 Meters	Upland Forest	15.17	Prepared Date:
	Monitoring Well TOTAL	125.09	V.S. Fish & Wildlife Service Prepared By: TETRA TECH, INC.

APPENDIX B

Completed Site Evaluation Data Forms

- Site Assessment
- Vegetation Monitoring
- Nekton Sampling
- Mosquito Sampling

[PAGE INTENTIONALLY LEFT BLANK]

Site Name: M	Restoration Monitoring Site Assessmi hill Brook Date: 9-11-09	Time: 0930 Time of last high tide: 0405			
Evaluator(s):	S Watts Tide:	High Mid (Low) and incoming (outgoing)			
Cloud Cover(
Temperature		ittent breeze steady breeze gusting			
Rain events w	ithin past 3-days (avg. over 72 hours): no				
REF #	ACCEPTABLE CONDITIONS	UN-ACCEPTABLE CONDITIONS			
1) Ditch Plugs:		CARACCEL TABLE CONDITIONS			
	Desirable species present	Desirable species absent; undesirable species present			
	Plant health/vigor good	Plants in poor health, showing signs of stress			
	No obvious loss of aerial coverage or density	Obvious loss of aerial coverage, plant density			
	No evidence of water flows, leaks	Evidence of water flows, leaks			
2) Excavated Po	ools/Altered Tidal Creeks:				
	Pools retaining adequate water	In-sufficient water retained in pools			
	Water quality adequate	Water quality poor (<i>i.e.</i> , anaerobic conditions)			
	Presence of nekton	Evidence of nekton die-off			
	Presence of macro-invertebrates	Evidence of macro-invertebrate die-off			
	Mosquito larvae none - few	Mosquito larvae common - many			
	Pool edges intact, stable	Pool edges sloughing, undercut, unstable			
	✓ Typical aquatic veg. species present	Devoid of aquatic veg. or invasive species present			
3) Natural Pools	5:				
	Pools retaining adequate water	In-sufficient water retained in pools			
<u> </u>	Water quality adequate	Water quality poor (<i>i.e.</i> , anerobic conditions)			
	Presence of nekton	Evidence of nekton die-off			
	Presence of macro-invertebrates	Evidence of macro-invertebrate die-off			
_	Mosquito larvae none - few	Mosquito larvae common - many			
* Note the pool n	number beside the appropriate unacceptable condition	if encountered, and describe the problem on back			
4) Pannes:	Size, aerial coverage not increasing	Size, aerial coverage increasing			
	Typical veg. species present	Presence of invasive species			
* Note the panne	number beside the appropriate unacceptable condition	on if encountered, and describe the problem on back			
5) Undesirable S	Species: (Chragmites, Typha) Lythrum, Polygonum cu				
	No undesirable species present	Undesirable species found on site			
	Undesirable species coverage not increasing	Undesirable species coverage increasing			
	ation of undesirable species on the cover type map				
6) Desirable Spe	cies: (Spartina, Juncus, Distichlis, Salicacia, Scirpus	s, Solidago, Ruppia) note others when encountered			
	Plant health, vigor good	Plants in poor health, showing signs of stress			
	No obvious loss of aerial coverage or density	Obvious loss of aerial coverage, plant density			
<u>/</u>	1A Shrubs, if present, are declining in health	Shrubs, if present, are healthy or increasing in % cover			

Observations (identify if any of the following observations are made)

Ref.		√if	Note Species, Activity, Number, Habitat Use, etc. (identify
#	Species Group	None	approximate location on cover type map)
7	Passerines or passerine nests		See species list
8	Wading birds or wading bird nests		
9	Water birds or water bird nests		
10	Raptors or raptor nests		и
11	Small mammals		
12	Large mammals		Deer
13	Amphibians	V	
14	Reptiles	1	
15	Recreational activities		thinking
16	Site disturbance	V	
17	Mosquito adult/larvae in pools		Few
18	Macro-invertebrates in pools	1	Water boatman, PDB, spiders
19	Fish in pools		munnicheg stickleback

Site Assessment (additional comments)

Be sure to record the location of features exhibiting un-acceptable conditions on the cover type map Ref. # Comments Ditch flugs - in excellent condition no longer discernable from surrounding mush. Veg w/ distrable S.M. species. No invasives present on P.P. Some water flow around DP in sim channels, but is not compounding stability or fixer of DP. ł. 2 Excavated Pools - It is difficult to discern which pools are excavated but where possible, pools appear to to stable, support of no mosq., edges intact and retaining water. We typical of some green algae/cpibente algas mats 3 Natural Pools - appear healthy, sustained, good WR Created Pools - edges stably intact. Have increased in site from original site (appear). Support out nektor. WR appears adequate. Algul mats typical. 4 Pannes - Mostly not increasing in site. One area near large pool between Exp and control noted increase in panne area on covertype map. Otherwise pannes do not appear to be increasing 5 Understrable Species - note presence of Typhe along march Fringe, distant from Exp sites, and Phragmites along ditch along west side of site, near excavated pool / plugged ditch. This should be monitored and/or treated. 6 Desirable Species - healthy vizoroup. Well established and not decreasing in cover.

Observers: watts Gaudet	Date: 9/30/04
Panne/Pool Complex: Control	Weather:
Transect ID:	Tide: Flood Ebb

<u>QUANTITATIVE ASSESSMENT</u> Plot ID: $| - \rho_{oo} \}$

Species Code	% Cover	Veg. Vigor
Bare	00	
	•	
		İ

Plot ID: 3

Species Code	% Cover	Veg. Vigor
SPPA	75	Hish
Defritus	20	Ť
Brare		
	· · · · · · · · · · · · · · · · · · ·	

Plot ID: 5

Species Code	% Cover	Veg. Vigor
SPAL	50	
SAEU Bare	4	
Bare	39	
Actritus	7	
•	•	

COMMENTS:

Plot ID: 2		
Species Code	% Cover	Veg. Vigor
SPAL	35%	
Bave algae	42	
algae	15	
Octritus	7%	
SAEU	41	

Plot ID: 4 - 1001

Species Code Bave	% Cover	Veg. Vigor
Bare	100	
•		

Plot ID:

Species Code	% Cover	Veg. Vigor

Mill Brook Pre-Restoration Monitoring

Observers: Wafts	Gaudet	Date:	9/30/09	
Panne/Pool Complex:	Control	Weather:		
Transect ID: 🔍		Tide:	Flood	Ebb

<u>OUANTITATIVE ASSESSMENT</u> Plot ID: / ~ Poo/

Species Code	% Cover	Veg. Vigor
Bare		
	2	
	/	

Plot ID: 3

TIOU ID.		
Species Code	% Cover	Veg. Vigor
SPPA	15	High
SPAL	. 1	
BAVE	78	
Detvitus	5	
SAEU	41	
	21	

Plot ID: 5^{\prime}

% Cover	Veg. Vigor
3 6 7 25	Veg. Vigor High
75	
	% Cover 360 2.5 75

COMMENTS:

Species Code	% Cover	Veg. Vigor
Bare	71	Hisk
abae	15	1 9
SPAL	10	
SPPA	3	
SAEU	6	

Plat ID: 4 Pool/Panne

Plot ID: H	- I Fain	
Species Code Bare	% Cover	Veg. Vigor
Bare	100	25
		-
		L

Plot ID:

Species Code	% Cover	Veg. Vigor

Mill Brook Pre-Restoration Monitoring

Observers: Walfs	Date: 9/30/09
Panne/Pool Complex: Control	Weather:
Transect ID: 3	Tide: Flood Ebb

<u>QUANTITATIVE ASSESSMENT</u> Plot ID: 1 - **P**00/

	007	
Species Code	% Cover	Veg. Vigor
Bare	100	
		1
		1

Plot ID: 3 - Pocl		
Species Code	% Cover	Veg. Vigor
Bare	87	Hish
SPAL	10	10-
SPAL Algae	3	
	•	

Plot ID: 2					
Species Code	% Cover	Veg. Vigor			
SPIAL	73	HISL			
Bure	20	10			
Bure algae	7				

Plot ID: 4

Species Code	% Cover	Veg. Vigor
SPPA	2	
Detritus Bare	5	
Bare	93	

Plot ID:

Species Code	% Cover	Veg. Vigor
·····		
· · · · ·		

Plot ID; 5

% Cover	Veg. Vigor
99	Veg. Vigor High
1	

COMMENTS:

Observers: watts Caudet	Date: 9/30/09
Panne/Pool Complex: Control	Weather:
Transect ID: 4	Tide: Flood Ebb

$\frac{\text{QUANTITATIVE ASSESSMENT}}{\text{Plot ID:} | - \rho_{00} |$

110t ID. 1 000 1				
Species Code Bare	% Cover	Veg. Vigor		
Bare				
		_		

Plot ID:3

Species Code	% Cover	Veg. Vigor		
SPPA	78			
SPAL	7			
Detitvus	10			
Bare	5			
		1		

Plot ID: 5 - PDOL

Species Code	% Cover	Veg. Vigor		
Bare	100			
0				

COMMENTS:

Plot ID:	-	
Species Code	% Cover	Veg. Vigor
SPAL	20	
SPPA	60	
SAEU	1	
Bare	7	
Detritus	10	
1		

Plot ID:4

2

		1
Species Code	% Cover	Veg. Vigor
BaRe	70	
	20	
SPAL	10	

Plot ID:

Species Code	% Cover	Veg. Vigor
	· · · · · · · · · · · · · · · · · · ·	

Mill Brook Pre-Restoration Monitoring

Observers: Watts Gaudet	Date: 9/	30/09	
Panne/Pool Complex: Control	Weather:		
Transect ID: 5	Tide:	Flood	Ebb

<u>QUANTITATIVE ASSESSMENT</u> Plot ID: 5 700

Species Code	% Cover	Veg. Vigor
Bare	100	
0		

Plot ID: 3

I IOU ID		
Species Code	% Cover	Veg. Vigor
SPAL	30	
SPPA	50	
SAEU	2	
RLMA		
Bkre	7	
Oetritus	10	

Plot ID: - Pool Species Code Veg. Vigor % Cover Bare 96 algal 3 A 1

Plot ID: 4 - Poo/

Species Code	% Cover	Veg. Vigor
BAre	100	
	-	

Plot ID:2

% Cover	Veg. Vigor
85	High
14	
1	
	% Cover 85 14 1

Plot ID:

Species Code	% Cover	Veg. Vigor

COMMENTS:

Observers:	Date:	The Long three was as
Panne/Pool Complex: Experimental 9	Weather:	We have a series of the series
Transect ID:	Tide:	Flood Ebb

<u>OUANTITATIVE ASSESSMENT</u> Plot ID: 1 - 200

% Cover	Veg. Vigor
100	
1	
1	
-	
	1
L	dia mana
	·····

Plot ID: 3

Species Code	% Cover	Veg. Vigor
SMAL	53	High
SPPA	335	
Bace	010	
SALA Bace Juge	2	1
-	<u>.</u>	
in the second		
-		

Plot m. 5

Species Code	% Cover	Veg. Vigor
SPAL	35	
Dise	45	
SPPA Rare	18	
Bare	2	
	1	
	1	
JL.		3.2

COMMENTS:

Species Code	ge of P. % Cover	Veg. Vigor
SPAL	25	High
SPPA	73	3
SULL	11	and the second s
Disp	de la martina	V
	in the second states.	
	1	
1	1	

19/21

Plot ID: 4

Species Code	% Cover	Veg. Vigor
Disp	99	H:94
Dis P SPPA	- I I.	
		- 1
		- in the second
	1	
·		

Plot ID:

ni.

Species Code	% Cover	Veg. Vigor
1	1 2124	
	1	
and the second second	the second to be	ne Chà china ne mertin
	and a second second	· / 100 0 120 0 000 110 0000
hand to a standard and	a a second a	and the second sec
- aller - aller	all and the second second	· training a should be an
	and the second second second	an a bana a sina a sa a
		and a strange as which y
1		

Mill Brook Pre-Restoration Monitoring

Observers: Watts Gaulet	Date:		Skielenskiege
Panne/Pool Complex: Experimental 1	Weather:	steve Farthe	ana Ferikamat
Transect ID: 2	Tide: F	lood	Ebb

OUANTITATIVE ASSESSMENT Plot ID: Δ

Species Code	% Cover	Veg. Vigor
SPAL	7.5	Hi35
SPPA		THE REAL
PISP	5,	
Detritus Bare	4	
Dire	<u> </u>	
angener all bri		
find as the state of the		
2 eb	21	

Plot ID: 3

IUT ID. C		
Species Code	% Cover	Veg. Vigor
Juge		HIGL
SIREI	3	and the second
JPPA	95	
Species Code TUGC SIRCI JPPA Detritus		
		E ST
	alue encertaire	

Plot ID: 1 - Popl

	001	
Species Code	% Cover	Veg. Vigor
Species Code Bare	100	
	lands and the second	() - e ⁽¹⁾ / ₂ = (
, Ann ann an tao		genter 1 - Land Angles N
1		1
Lease and the second		
Contraction of the Contraction o		-

COMMENTS:

Species Code	% Cover	Veg. Vigor
Juge	45	T. Shark
Disp	45	
SALI	5	1
Detritus	5	

Plot ID: 2 - POO/

Species Code	% Cover	Veg. Vigor
Species Code	% Cover 100	
	1 3 3	
	1	

Species Code	% Cover	Veg. Vigor
	1. 362	
		1 254
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-		
1		

Observers: Watts	Date:
Panne/Pool Complex: Experimental 1	Weather:
Transect ID: 3	Tide: Flood Ebb

QUANTITATIVE ASSESSMENT

Plot	ID:	

	AL (2)	T
Species Code	% Cover	Veg. Vigor
SPAL SPDA Netritus Bare	.58	HBL
SPDA	30	
Netritus	10	
Bare	2	V
	<u></u>	

Plot ID: 3

Species Code	% Cover	Veg. Vigor
SPAL	45	
SPPA	1820	
Bare	30	
SPAL SPA Bere Detritus	5	

Plot ID: 1 - P001

	- ·	
Species Code	% Cover 100	Veg. Vigor
Species Code Bare	100	
		1
	· · · · · · · · · · · · · · · · · · ·	
	,	

COMMENTS:

Plot ID: 4		
Species Code	% Cover	Veg. Vigor
DISP	15	Veg. Vigor
Juge	70	
JUge SULLI	15	
aladi		

Plot I	D: 2	-	100	1
				_

Species Code Bare	% Cover 100	Veg. Vigor
Bare	100	

Plot ID:

Species Code	% Cover	Veg. Vigor

Mill Brook Pre-Restoration Monitoring

Observers: W5445	Gaudet	Date: 9	130109		
Panne/Pool Complex:	Experimental 1	Weather:			
Transect ID: 4		Tide:	Flood	Ebb	

$\frac{\text{QUANTITATIVE ASSESSMENT}}{\text{Plot ID: } (- Pool)}$

Species Code	% Cover	Veg. Vigor
Bare	100	

Diet ID.	2	-Pool	
Plot ID:	-7	-1001	

Species Code	% Cover	Veg. Vigor
BARE	100	

Plot ID: 5

FIOL ID		
Species Code	% Cover	Veg. Vigor
SPAL	80	HIGL
SAEU	1	
PLMA	2	
SPPA	10	
Bare	8	
-		

COMMENTS:

Plot ID: 2 - Pool

% Cover	Veg. Vigor
100	
· ·· · · · ·	
· · · · · ·	
	% Cover

Plot ID: 4 - POC	2
------------------	---

Species Code	% Cover	Veg. Vigor
Species Code	160	1.17

Species Code	% Cover	Veg. Vigor
_		
	·	

and a second

Observers: Swatts TGaudet	Date: 9/30/09
Panne/Pool Complex: Experimental 1	Weather: OVer cast 60's
Transect ID: 15	Tide: 9:15 Flood OUF Ebb

OUANTITATIVE ASSESSMENT Plot ID: **Q** U

% Cover	Veg. Vigor
80	High
1%	
19%	V
	% Cover %0 % 9 %

Plot ID: \$3 - Pool

	- ,	
Species Code	% Cover	Veg. Vigor
Bare	100	
	1	
	-	

Plot ID: 2 - POO Species Code % Cover Veg. Vigor Bare 100 -			
Species Code	% Cover	Veg. Vigor	
Bare	100	-	

COMMENTS:

Plot ID: / ~ poo/

Species Code	% Cover / 0 0	Veg. Vigor
Bare	100	
S		

Plot ID: 5

Cover	Veg. Vigor
2	
0	
**	
5	
	5

Species Code	% Cover	Veg. Vigor
		1

Observers: watts Gaudet	Date: 9/30	0/09	
Panne/Pool Complex: FxPerimental 2	Weather:		
Transect ID: (Tide:	Flood	Ebb

QUANTITATIVE ASSESSMENT Plot ID: 1 - Pool

1 IOU ID.	• - /	
Species Code Bare	% Cover	Veg. Vigor
Bare	100	
	·	

Plot ID: 3

Species Code	% Cover	Veg. Vigor
Species Code	49	
SPAL	35	
Bare	4	
SPAL SPAL Bave Detritus	12	

Plot ID:5 -

TIOU ID.		
Species Code	% Cover	Veg. Vigor
SPAL	5	
Scho	2	
Bare	42	
SPPA	i	

COMMENTS:

Plot ID:

Species Code	% Cover	Veg. Vigor
SPAL	65	
Detritus	10	
Netritus Bare	25	
• • • • •		

Plot ID: 4

Species Code	% Cover	Veg. Vigor
SPPA	22	
SPAL	60	
Bare	12	
Detritus	6	
2.2 2.1	•	

Species Code	% Cover	Veg. Vigor
L		

Observers: Walls Gaudet	Date: 9/30/09
Panne/Pool Complex: Experimental 2	Weather:
Transect ID: 2	Tide: Flood Ebb

<u>QUANTITATIVE ASSESSMENT</u> Plot ID: $1 \rho_{OO}$

Species Code	% Cover	Veg. Vigor
bare	100	

Plot ID: 3

TIOUID.		
Species Code	% Cover	Veg. Vigor
SPAL	7/	
3PPA	9	
4010	3	
Bare	12	
Scro Bare Detritus	5	

Plot m. 5

% Cover	Veg. Vigor
45	De 103
2	
40	
3	

COMMENTS:

Species Code	% Cover	Veg. Vigor
SPAL	02	
Bare	98	
		1
		1
	• • • · · <u>· · · · · · · · · · · · · · ·</u>	

Plot ID: 4

Species Code	% Cover	Veg. Vigor
SPPA	100	
	·	
		ļ
		·····

Plot ID:

Species Code	% Cover	Veg. Vigor
N.		

3

Observers: Waft 5	Gradet	Date:	9/30/04	
Panne/Pool Complex:	Experimental 2	Weather:	F 5	
Transect ID: 3		Tide:	Flood	Ebb

QUANTITATIVE ASSESSMENT Plot ID: 5

Species Code	% Cover	Veg. Vigor
DiSP	78	
SPPA	10	
Juge	-1	
Grass SP.	1	
Juge Grass SP. Dotritus	10	

Plot ID: 3 - Pool			
Species Code	% Cover	Veg. Vigor	
Bare	100		
	···-·		

Plot ID: 1 - P001

	÷	
Species Code	% Cover	Veg. Vigor
Bare	100	
	L	

COMMENTS:

Plot ID: 4		
Species Code	% Cover	Veg. Vigor
SPPA	75	
SPAL	10	
Detritus	15	

Plot ID:	2	POOS
----------	---	------

	-	
Species Code	% Cover	Veg. Vigor
Bare	100	
		1
		<u> </u>
		<u> </u>

Species Code	% Cover	Veg. Vigor
		·

Observers: Light Candet	Date: 9/30/09
Panne/Pool Complex: Experimental 2	Weather:
Transect ID: 4	Tide: Flood Ebb

OUANTITATIVE ASSESSMENT

Plot II	1:5
---------	-----

	Species Code JUge	% Cover	Veg. Vigor
	Juge	90	
	Disp	9	
54	LI??		
		1	

Plot ID: 3 - Pool

Species Code	% Cover	Veg. Vigor
Bare	% Cover 100	
	·····	
		l
		1

Plot ID: 1 - P00

Species Code	% Cover	Veg. Vigor
Species Code Bare	% Cover /00	
	·····	[
2		
		÷

COMMENTS:

Plot ID: 4		
Species Code	% Cover	Veg. Vigor
SPAL	81	
Species Code SPAL Detritus Bare	12	
Bare	7	
	-	
	_	

Plot ID: 2 Pool

Species Code	% Cover	Veg. Vigor
Species Code	100	
		3
•		

Species Code	% Cover	Veg. Vigor
	· · · · · · · · · · · · · · · · · · ·	
┝		

Observers: Watts Gardet	Date: 9/30/09
Panne/Pool Complex: Experimental 2	Weather:
Transect ID: 5	Tide: Flood Ebb

<u>OUANTITATIVE ASSESSMENT</u> Plot ID: / - POO/

6 Cover	Veg. Vigor
2	
0 0	
	<i>0</i>

Plot ID.3

Species Code	% Cover	Veg. Vigor
SPAL	48 20	
SPPA	30 40	
Detritus Bhre	10	
Bure	2	
2		

Plot ID: 5 - P00/ Species Code BARe % Cover Veg. Vigor 100

COMMENTS:

Plot ID: 2		
Species Code	% Cover	Veg. Vigor
SPAL	81	
Bare	12	
Bare Detritus	7	

		11
Plot	m •	7

	FIOLID: /		
	Species Code	% Cover	Veg. Vigor
	SPAL	15	
	algae	10	
1001	- Bare	75	
			1

Plot ID:

Species Code	% Cover	Veg. Vigor
ļ		
	<u></u>	
	· · · · ····	
-	i	

Mill Brook Pre-Restoration Monitoring

[PAGE INTENTIONALLY LEFT BLANK]

Station:	NTROL Observer(s): LR + TG	- Date	
	e: 2:50 PM End Time	4:17	Air 7	'emp (°F): ~ 78°
Fide (circl	e one): Flood (El	b) Weather: Su	nny Breezy	Ser Con Maria
			5 0	The Ard
Pool / Panne ID	Fish Species	Abundance	Invertebrate Species	Algae Present?
NC-1	Banded Killifish (Juvenile)		manphipod waster bontme Midge	Yes
NC-2	Banded Killifish (Juvenile)		Whiter Jasobron	Yes
NC-3	Banded Killifsh (juvenile)	17	G mphilod	Yes
NC-4	Banded Killifish (Juvenile)	1	amphifod midge	Yes
NC-5	None	-	Maler boatmen Midge	Yes
VC-6	Banded Killifish (Juvenile)		Water (bastme)	Yes
NC-7	none		water Spoating	Yes
VC-8	Banded Killifish (Juvenile)	3	midge amphipod	Yes

Comments: NC-8-grass and algae Present, very Small Amount

٩

Mill Brook Pre-Restoration Monitoring

Station: Exp. # 1	Observer(s): Le + TG-	Date: 8409
Start Time: 4:20	End Time: 4:59	Air Temp (°F): ~ 78°
Tide (circle one): F		reezy

Pool / Panne ID	Fish Species	Abundance	Invertebrate Species	Algae Present?
NC-1	Banded KilliFish (Juvenile)		Water Stanfment Shrim A-lage transformt	Yes
NC-2	Silverside Menidia menidia)		Water boatner Midge	Yes
NC-3	None		haters boataen	Yes No
NC-4	none		Water Jantmen a mphi pods	No Fikm
NC-5	none		anphilod S	Yes
NC-6 N/A				Yes No
NC-7				Yes No
NC-8 NA			*	Yes No

Comments: 5 stations

Station: Exp, #2	Observer(s): LR+ TG-	Date: 8/4/09
Start Time: 5:05	End Time: 6:15	Air Temp (°F): $\sim 70^{\circ}E$
Tide (circle one): F	lood (Eb) Weather: Sunny	Greezy

Pool / Panne ID	Fish Species	Abundance	Invertebrate Species	Algae Present?
NC-1	none		Water Bartness	Yes
NC-2	Banded Killifse Mummichug-adult	10 2	water Sparta en	Yes
NC-3	Silversides Banded Killifish	2	water bodment	Yes
NC-4	Banded Killifizh	6	Water Doatmen	Yes
NC-5	None		voiter Kippateon	Yes
NC-6				Yes No
NC-7				Yes No
NC-8				Yes No

Comments: 5 Stations

Mill Brook Pre-Restoration Monitoring

Station: Co			Sweitzer	1 alatace
Start Time:			averef Date:	emp (°F): 53 F
Tide (circle			Sunny nild	Lant Bras
The (ch cic	5 incoming	Tob Weather.	source incla	190 - 01002
Pool /			Invertebrate	
Panne ID	Fish Species	Abundance	Species	Algae Present?
.4	none	energia de la constante	midge,	
NGI			anph. Pods	Yes
NC-1			water boatach	-
	Fundulus Yor	1	amphipod	
NC-2	too SMall to		Water boatmen	Yes
110-2	ED LBOMM		Midge	No
			V	
	none	~	mater bontme	1
NC-3			amphi Pod	Yes
			midge	No
			V	
	none	~	amphipod	
NC-4			Midge	Yes
			×	
	Banded	1	amphilod	
NC-5	Killifish		Midge	Yes
-			· · · · · · · · · · · · · · · · · · ·	No
	0			
-	None		midge	
NC-6			amphilod	Yes
-				No
	0 - 10		midge anphitod	
-	none		I a po pi p 1	-
NC-7	1		www.wou	No
				INO
	0.00		ANTZ CLO	
-	none	и (е.	a alloge A	Vor
NC-8			arminingo	Yes
-	21			

Comments:

Station: EXP 1	Observer(s): LR TG	Date: /0/8/89
Start Time: 10 40	2 End-Time: 11:05	Air Temp (°F): 53°F
Tide (circle one):	Flood Ebb Weather: Sunny M	1

Pool / Panne ID	Fish Species	Abundance	Invertebrate Species	Algae Present?
	None	allen-	amphipod	
NC-1			midge	Yes
		-		No
	none		amphilod	
NC-2		· · · · ·	water bothen midge	Yes
		······································	MAYE	itto
	none	· · · · · · · · · · · · · · · · · · ·	nidge	Yes
NC-3			anphipod water boatmen	No
	none	·	nidae	
NC-4			water boatren	Yes
			exaphipod	No
	none.			
NC-5	-			Yes
		· · · · · · · · · · · · · · · · · · ·		110
				Yes
NC-6				No
	-			
NC-X	-			Yes
	19			No
NC-8 -		·		Yes
				No

Comments:

Mill Brook Pre-Restoration Monitoring

Station: Exp 2	Observer(s): LK	TC	Date: 10/2/09	
Start Time: 10:00 a	End Time: 10	30	Air, Temp (°F): 53	
Tide (circle one):	Flood > Ebb Wea	ather: Sunn	v mild	

Pool / Panne ID	Fish Species	Abundance	Invertebrate Species	Algae Present?
NC-1	None		Waterboatnen(many Snails Worm SP	
NC-2	None		water boatnen	Yes No
NC-3	Banded Killifed	1	water boatmen midge amphipod	Yes
NC-4	none		Water poatnen	Yes
NC-5	Banded Killifish	15		Ves
NC-6		-		Yes No
ic-z				Yes No
NC-8				Yes No

Comments:

Date: 9/7/07 Observer: Brian Rod Temp (°F): Avr: 75° Start Time: 1400 End Time: 1530 Tide:, 1530 Neap Weather: Sing/ Clear, Modacola breeze							
	Individuals Present	Average Number of Individuals (Few 1 - 20, Common 21					
Pool/Panne ID	(<u>Y</u> es or <u>N</u> o)	- 40, <u>M</u> any >40)	Key				
MC-1		M NF	M = Mosquito				
MC-2		Deoin E ME	C = Control				
MC-3	·····	M FF	X1 = Experimental 1				
MC-4		FMF	X2 = Experimental 2				
MC-5		M NF	# = Location Number				
MC-6		F NF					
MC-7		M NF	FF= few fish NF= NO Fish				
MC-8		Ç FF	NF=NOASL				
MC-9	• · · · ·	F NF					
MC-10		F NE					
M X1-1		C MART	Pool, bego + why ve cover				
M X1-2		MNF					
M X1-3	N	N CF "					
M X1-4		E FE	Clockenike from Whe Like				
M X1-5		F NF					
MX1-6		F FF.					
MX1-7	N	N NE	Just. Not ditch plug				
MX1-8	M	P DF					
M X2-1		C FP Sm	11 000				
M X2-2	N	N CF					
M X2-3		F MF	Algre on surface obscur Viend				
M X2-4		C NF	View				
M X2-5		M NF.	- alghe arendrate				
MX2-6	N	N NE	- Cluckin ye from WLR sta				
MX2-7		F. FF.	- Mapoul blue 1+2				
MX2-8	N	N ME	Algue onsverture - Clucker ise from WLR sta - NW side Ut pobl algoe thick algue wills on thes				
MX2-9		F MF	algoe autommon				
MX2-10		F AF	thick sharp while in the				

Date: 7/18/07	Observer:	Brinn Rod	Temp (∘F): ~70°F
Start Time: 1530	End Time:	Tide:	
Weather: Overie	when the pe	w chort prinkles	
ſ		· · · · · · · · · · · · · · · · · · ·	1
		Average Number of	
	Individuals	Individuals	
	Present	(<u>Few 1 - 20, Common 21</u>	
Pool/Panne ID	(<u>Y</u> es or <u>N</u> o)	- 40, <u>M</u> any >40)	Key
MC-1	V.	F M NE	M = Mosquito
MC-2	M? Y	Kindurdege a mush IF	C = Control
MC-3	Y	M NF	X1 = Experimental 1
MC-4		MI	X2 = Experimental 2
MC-5	<u> </u>	MNA	# = Location Number
MC-6	4	C NF	N/S Not Sampled
MC-7	Y	M NF	
MC-8	<u> </u>	G NF	MF: NoFsh MF= namy fish
MC-9	· Y	Ç ~3F	MF= many fish
MC-10	and the second second	PA NT	
M X1-1	. 4	M NE	
M X1-2	4	M NF	Chan B. and
M X1-3	· ~/	E-C NF	pretty deep
M X1-4	~	M NE	
M X1-5	<u> </u>	M NF	_
MX1-6	Ý	M Mr	-
MX1-7	. Vj	M NE	
MX1-8	A CONTRACT OF A		Tal del to Khin at 4:20
M X2-1	<u> </u>	MI	Sturted to VAIN at 4:20 St ded ad to the for the fort
M X2-2	Y	EM EFE	A starter of the starter
M X2-3	<u> </u>	M NF	Stopped 2 flan till 4
M X2-4	Ч	M NF	
M X2-5	<u> </u>	1	Caller Wenthin
MX2-6	<u> </u>	G	(1001) · · / · · · · · · · · · · · · · · · ·
MX2-7	<u> </u>	5	Stormed 2 Hun till 4 Poul FFY Wentfull Poul FFY Wentfull Poul Z Criku Se 165t
MX2-8	<u> </u>	F-bijditik	Carl i last
MX2-9	Y	M	- ILLIN FR
MX2-10	Y	M	

Comments:

 $t \parallel$

tart Time: ~ 12 P/		I manina A	. I hour ofter UN
eather: Breczy	, sunny		
	T	Average Number of	
	Individuals	Individuals	
	Present	(Few 1 - 20, Common 21	
Pool/Panne ID	(Yes or No)	- 40, <u>M</u> any >40)	Key
MC-1	Y	(1)e) F (hatched) * amph the	M = Mosquito
MC-2	N	X) and an I O	restriction ph, C = Control
MC-3	<u>Y</u>	Ethatched w.b.m.	X1 = Experimental 1
MC-4	N	Q TISH(9-Soller) glass claime	X2 = Experimental 2
MC-5	Y	E spider, Whom, amply, water	weetle #=Location Number
MC-6 MC-7	Y		will maniph mosq husks en alc mummichag, w.bm., mosq. carep
MC-7 MC-8	Y	+ M (Shells-hatched	munnichog, w.om, , mosq. carapi
MC-8 MC-9	N	* M Ishelle Lateland	
MC-10	<u> </u>	1 Isricij-hardaral	within amphy
M X1-1		* M (shells-hatched)	Wom, amphib.
M X1-2		<u>R</u>	whim spider mind
M X1-2 M X1-3	N		sader, w.b.m. amph:
M X1-4		- 8	shails, w.b.m. amph.
M X1-5			w.b.m, mummichig spider
MX1-6			w.b.m,
MX1-7	N	X	w.b.m. fish W.b.m. Ash
MX1-8	1-+		
M X2-1	Y	E	shail, w.b.m. w.b.m., pred. beetle larval
M X2-2		F +	waterstrider, spider sparts with m
M X2-3	Y	F	Waterstrider, spider, snarls, W.b.m., Wib, m., prod. div ny beet (anne, inst
M X2-4	N	8	the water boatman, prod. divingbeete lan
M X2-5	N	8	-> numerous noter boatmen, amp
MX2-6	N	Ø	water bootmen, a mphipod, spider, to
MX2-7	N	Jan 19	Wib, m
MX2-8	N	8	us m, amph. *snails
MX2-9	N	Ø	fish, w.b.m., amph, emptysnail shell
MX2-10	N	R	Ashlarrau, w.b.m. amph.
	= comphipod		Am. Crow
2) sulfros donin	itel by w.b. n	have all ready hatched are fragments in these week	20

Mill Brook Salt Marsh Restoration Monitoring

edge

Date: 9-10-09	Observer:		Temp (oF): 70's and rising , hi
Start Time 0830	End Time: \2	LIDS Tide: outgoing	In Sincomina Som
Weather: clian,	warm, nob	reeze (breeze pick)	Lup (atu @ ~ 8:45)
A CONTRACTOR	Constant Provent		
A CARLES	The second	Average Number of	
	Individuats	Individuals	
and the ward of	Present	(Few 1 - 20, <u>C</u> ommon	21 midge
Pool/Panne ID	(Yes or No)	- 40, <u>M</u> any >40)	amphipods Key
MC-1	Y	F 2 sosist 1 arvau : back	Swithmen M = Mosquito
MC-2	N	bockswimmens am a hipod	
MC-3	N. C.		Muni amph X1 = Experimental 1
MC-4	N	manushimo, fishobarre	
MC-5	N N	backewimmas toshobe	
MC-6	N.	backswimmens	The second s
MC-7	N	backswimmens, amphippe	ls. shails
MC-8	N STA	backswimmens, amphiper	
MC-9	Y.	C (CAEL) backswimmer,	amphipods
MC-10	A start	phack and a second	10 ANN
M X1-1	Y	F. (case) stio Eli bade, K	litesh, backson immense), amphis
M X1-2	N	larvalkilifish, backswi	minus
🗙 M X1-3 🥕	N	backswimmens spails	
🙀 M X1-4	N.	bapks with Muns	
M X1-5	N	brokswinner, snales, 61	Inteh
M¥1-6	- A	F(Case) middle backswin	omos amphipoas
MX1-7	y	(CRAM) MIKCIN IMMOR	
MX1-8	YF	MICANES) BOCKENIMPERS	mare, amphipud, pred. divingbert
M X2-1	VN'	many juv. Killfish, pred. divir	martins lange
M X2-2	N	backswimmens maden in w fishold	served + larval maggor w/ fact article
M X2-3	N	backswimmens (100's); predk	cialis diving beatle know; water beatle
X M X2-4	N	amphipods, sm. shall ma	balmat; jou stickle back; jourk; Ilific)
🗙 M X2-5	N	Houckswim Moisism shail	<u>.</u>
MX2-6	N		Start and the second
MX2-7	N	Black swimmens; adult me	squeto; sm. snalls; spider, waters to
MX2 ⁺ 8	. N.I.	backswimmer; smanalle	
MX2-9	N.	backswimmens, sm sharls	
MX2-10	· K) //	many sm snillo; stickle bac	

Comments:

MX2=4 and MXZ-5 - Not standing water, sampled larger adjacent pool located to south. Many fishobserrich in Exp Rol #2 Control-majority & per meter pools dry (i.e. nostanding mater) Mc-5 dry-sampled circulus pool to west

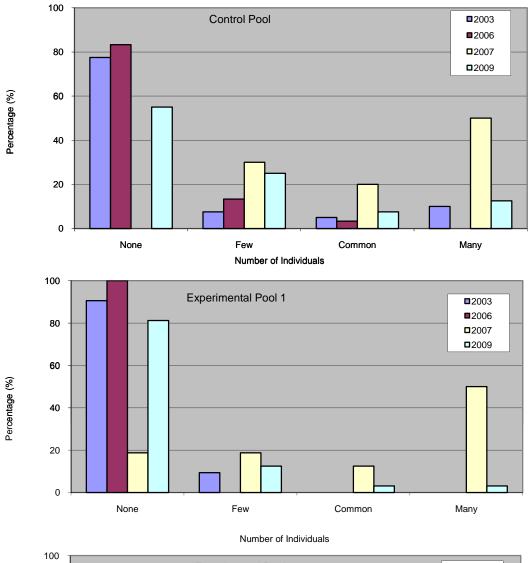
Date: 8/25/09	Observer: 8	NATTS	Temp (°F): 80
Start Time: 0900	End Time: 1100 Tide: Outoping		0W
Weather: clear,	sunny veria	little wind	
) 9 -		
Pool/Panne ID	Individuals Present (Yes or No)	Average Number of Individuals (Few 1 - 20, Common 21 - 40, Many >40)	Key
MC-1	N	wb. nummi.	M = Mosquito
MC-2	N	W.b. OS, pdb.	C = Control
MC-3	N	, il a mumichog	
MC-4	N	why red worm smails augh	X1 = Experimental 1
MC-5	N	why shails, spided	X2 = Experimental 2 # = Location Number
MC-6	N	H II II	The colder the new second
MC-7		E	wb spider, amph wb. butte. spider \$
MC-8	N		W.b. Spider, shalls .
MC-9	N		Wb. f. clams, spider, a obs.
MC-10	N		why. pdb larvae, bectle, spid
M X1-1	N		wb spiler
M X1-2	N		wb
M X1-3	N		which a dra
M X1-4	N		Wb, pdb, spillers Wb, pdb, spillers Wb, ample, syider
M X1-5	N		way party spiritus
MX1-6	N		vo, ampr, sy rour
MX1-7	Y	~	Wb.
MX1-8	N	F (carcao) N/A	Wb, worm, empl. Wb, spider
M X2-1	N		Wb, smails, spider
M X2-2	N		h A h
M X2-3	N		Wb, snails
M X2-4	N	2	WL
M X2-5	Ň		Wb, Shails
MX2-6	N		who shart
MX2-7	N	1	wb snail
MX2-8	N		ust spider 1
MX2-9	N		wb. spiler, larvae. wb spiler wb
MX2-10	N		why a start of the

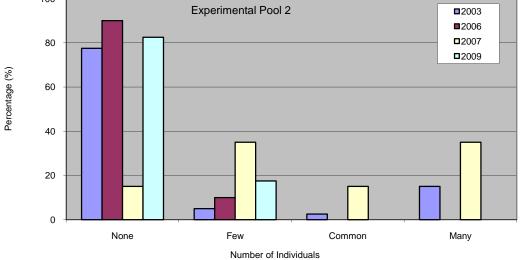
Comments:

Found very few mosquitors or mosquito larvae "on project site. Following spring high tide, would have expected more larvag and it not larvae then adults swarming around. It's possible that recent storms / preipitation effected this ...?

Date: 9/22/09	Observer: L.	Rivard	Temp (oF): ~62° and 1
Start Time: 0830		10 Tide: Low@ 0755	Bangling
Weather: sunny	wind colm	Engitet wappy cloudy I age	A CONTRACTOR OF THE OWNER
J.		J. M. J. M. J. M.	
Pool/Panne ID	Individuals Present (Yes or No)	Average Number of Individuals (Few 1 - 20, Common 21 - 40, Many >40)	Key
MC-1	N	who shails	M = Mosquito
MC-2	Y	adult of land F Snall which	Fly C = Control
MC-3	Y Internet	arval M (in pondsium harded	X1 = Experimental 1
MC-4	- Y	arval tadult (F), wb, snails,	X2 = Experimental 2
MC-5	Y Jan	lanval + adults (); wbjshrimp;s	hails # = Location Number
MC-6	N	spikins; snouls; fishobsenre	incord
- MC-7	Y,	Fadutts whishping sharls	
MC-8		Faluts whishing shalls	
MC-9	X	Marvae, Fadults; wb	
MC-10	Y	Flanuar; Fadults: wb	
M X1-1	N	wb	
M X1-2	N	Wb .	
M X1-3	N N	· wb	
M X1-4	At	spider, wb	and the second sec
M X1-5	NN	Wb	
MX1-6	N. F.	soiders; spails	
MX1-7	N	Wb	
MX1-8	N	Whisparls	
M X2-1	X -	adult(=); wb; snauls, flylanva	Huy the Alexandrial)
M X2-2	N	Flywhy shalls =	
M X2-3	N	whisparts; fly	
M X2-4	Y.	adult (=) whi shails	Series Line
M X2-5	N	spails (m)	
MX2-6	Y	allult(F)	
MX2-7	N	wb; spoly	
MX2-8	N.	wb; dragently nymph; fly (n	hany alit on surfule of pour
MX2-9	N ST	When you are a second s	

Comments:


MX2-10


Nearforest edge of Exp Pool # 2. Serval airborne mosquitos pestering order is countinclociense from WIR(1) All lariae ab served were of cases that had hatched out. Wb= water boat man

F(adults); red worm

in the

Mosquito Sampling Results for the Mill Brook Salt Marsh Restoration Monitoring Project, Scarborough, Maine.

[PAGE INTENTIONALLY LEFT BLANK]

APPENDIX C

Photographic Documentation

[PAGE INTENTIONALLY LEFT BLANK]

PHOTOGRAPHIC DOCUMENTATION Year 5 Post-Restoration Monitoring

Company: U.S. Fish and Wildlife Service & Friends of Scarborough Marsh Mill Brook Salt Marsh Restoration **Project:**

PHOTO STATION 1 – CONTROL POOL

Photographer: L. Rivard 08-07-09 Date: Photo No.: 1 Direction: 40

Comments:

Beginning of panoramic series from Photo Station 1 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	2
Direction:	80

Comments:

Panoramic series from Photo Station 1 at Spring outgoing

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 1 – CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:3Direction:130

Comments:

Panoramic series from Photo Station 1 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	4
Direction:	190

Comments:

Panoramic series from Photo Station 1 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 1 – CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:5Direction:245

Comments:

Panoramic series from Photo Station 1 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	6
Direction:	290

Comments:

Panoramic series from Photo Station 1 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife ServiceProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 1 – CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:7Direction:350

Comments:

End of Panoramic series from Photo Station 1 at Spring outgoing low tide.

PHOTO STATION 2 – CONTROL POOL

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	8
Direction:	45

Comments:

Beginning of panoramic series from Photo Station 2 at Spring outgoing low tide.

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife ServiceProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 2 - CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:9Direction:90

Comments:

Panoramic series from Photo Station 2 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	10
Direction:	140

Comments:

Panoramic series from Photo Station 2 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 2 – CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:11Direction:195

Comments:

Panoramic series from Photo Station 2 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	12
Direction:	250

Comments:

Panoramic series from Photo Station 2 at Spring outgoing low tide.

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 2 – CONTROL POOL

Photographer:L. RivardDate:08-07-09Photo No.:13Direction:305

Comments:

Panoramic series from Photo Station 2 at Spring outgoing low tide.

Photographer:L. RivardDate:08-07-09Photo No.:14Direction:355

Comments:

End of panoramic series from Photo Station 2 at Spring outgoing low tide.

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 3 – EXPERIMENTAL POOL #1

Photographer:L. RivardDate:08-07-09Photo No.:15Direction:40

Comments:

Beginning of panoramic series from Photo Station 3 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	16
Direction:	85

Comments:

Panoramic series from Photo Station 3 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION **Post-Restoration Monitoring**

U.S. Fish and Wildlife Service & Friends of Scarborough Marsh **Company:** Project: Mill Brook Salt Marsh Restoration

PHOTO STATION 3 – EXPERIMENTAL POOL #1

Photographer: L. Rivard Date: 08-07-09 Photo No.: 17 Direction: 140

Comments:

Panoramic series from Photo Station 3 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	18
Direction:	190

Comments:

Panoramic series from Photo Station 3 at Spring outgoing

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 3 – EXPERIMENTAL POOL #1

Photographer:L. RivardDate:08-07-09Photo No.:19Direction:245

Comments:

Panoramic series from Photo Station 3 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	20
Direction:	290

Comments:

Panoramic series from Photo Station 3 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 3 – EXPERIMENTAL POOL #1

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	21
Direction:	350

Comments:

End of panoramic series from Photo Station 3 at Spring outgoing low tide.

PHOTO STATION 4 – EXPERIMENTAL POOL #1

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION **Post-Restoration Monitoring**

U.S. Fish and Wildlife Service & Friends of Scarborough Marsh **Company:** Project: Mill Brook Salt Marsh Restoration

PHOTO STATION 4 – EXPERIMENTAL POOL #1

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	23
Direction:	90

Station 4 at Spring outgoing

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	24
Direction:	135

Comments:

Panoramic series from Photo Station 4 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 4 – EXPERIMENTAL POOL #1

Photographer:L. RivardDate:08-07-09Photo No.:25Direction:190

Comments:

Panoramic series from Photo Station 4 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	26
Direction:	230

Comments:

Panoramic series from Photo Station 4 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 4 – EXPERIMENTAL POOL #1

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	27
Direction:	295

Comments:

Panoramic series from Photo Station 4 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	28
Direction:	345

Comments:

End of panoramic series from Photo Station 4 at Spring outgoing low tide.

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 5 – EXPERIMENTAL POOL #2

Photographer:L. RivardDate:08-07-09Photo No.:29Direction:20

Comments:

Beginning of panoramic series from Photo Station 5 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	30
Direction:	55

Comments:

Panoramic series from Photo Station 5 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION **Post-Restoration Monitoring**

U.S. Fish and Wildlife Service & Friends of Scarborough Marsh **Company:** Project: Mill Brook Salt Marsh Restoration

PHOTO STATION 5 – EXPERIMENTAL POOL #2

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	31
Direction:	120

Comments:

Panoramic series from Photo Station 5 at Spring outgoing low tide.

08-07-09 32 160

Panoramic series from Photo Station 5 at Spring outgoing

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 5 – EXPERIMENTAL POOL #2

Photographer:L. RivardDate:08-07-09Photo No.:33Direction:195

Comments:

Panoramic series from Photo Station 5 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	34
Direction:	220

Panoramic series from Photo Station 5 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 5 – EXPERIMENTAL POOL #2

Photographer:L. RivardDate:08-07-09Photo No.:35Direction:330

Comments: End of panoramic series from Photo Station 5 at Spring outgoing low tide.

PHOTO STATION 6 – EXPERIMENTAL POOL #2

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 6 – EXPERIMENTAL POOL #2

Photographer:L. RivardDate:08-07-09Photo No.:37Direction:100

Comments:

Panoramic series from Photo Station 6 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	38
Direction:	160

Comments:

Panoramic series from Photo Station 6 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

PHOTO STATION 6 – EXPERIMENTAL POOL #2

Photographer:L. RivardDate:08-07-09Photo No.:39Direction:212

Comments:

Panoramic series from Photo Station 6 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	40
Direction:	260

Comments:

Panoramic series from Photo Station 6 at Spring outgoing low tide.

Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

NORTHERN ECOLOGICAL ASSOCIATES, INC.

PHOTOGRAPHIC DOCUMENTATION Post-Restoration Monitoring

Company:U.S. Fish and Wildlife Service & Friends of Scarborough MarshProject:Mill Brook Salt Marsh Restoration

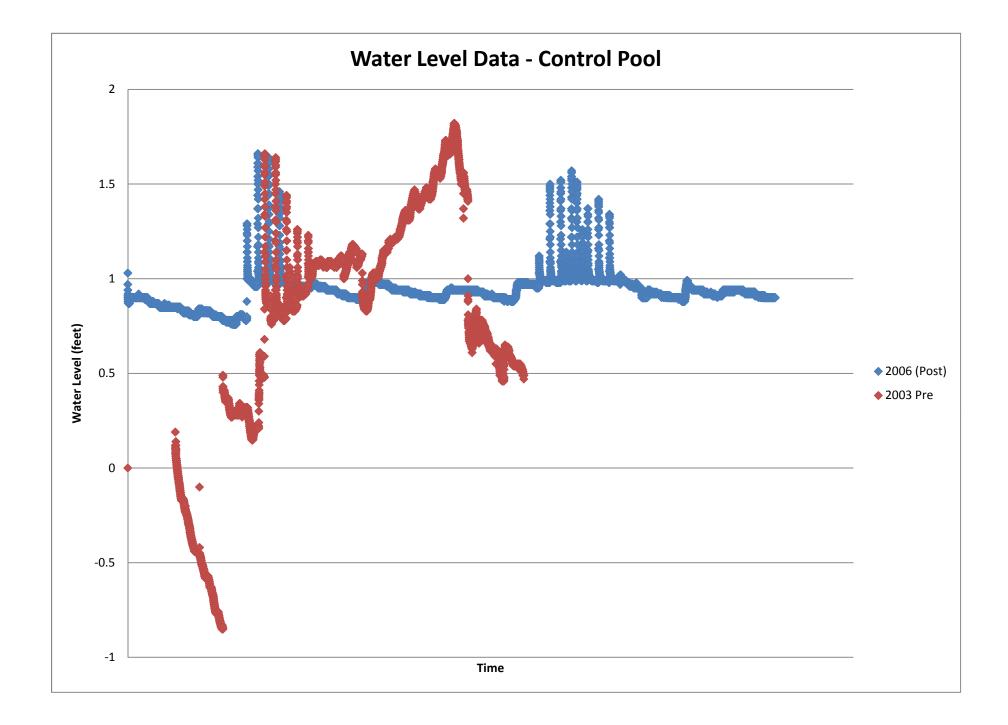
PHOTO STATION 6 – EXPERIMENTAL POOL #2

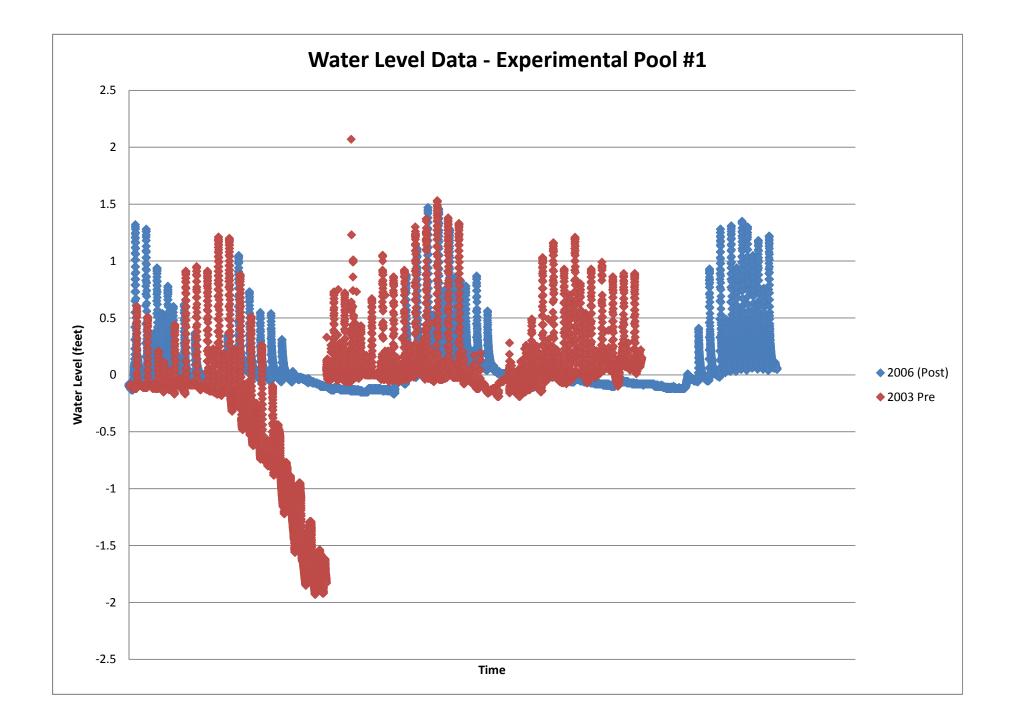
Photographer:L. RivardDate:08-07-09Photo No.:41Direction:300

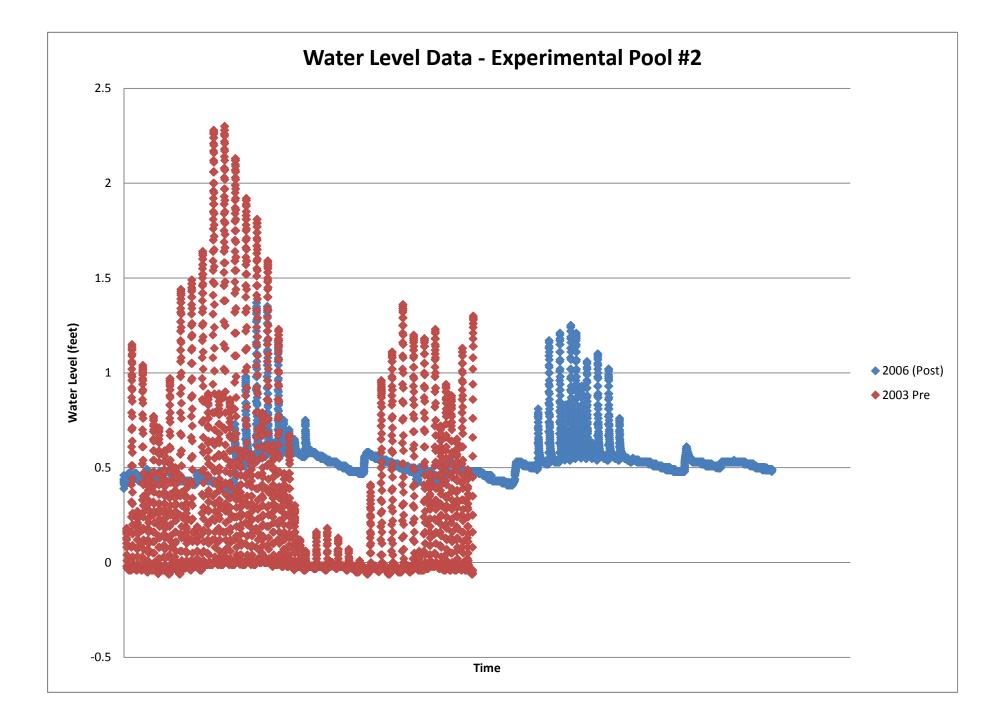
Comments:

Panoramic series from Photo Station 6 at Spring outgoing low tide.

Photographer:	L. Rivard
Date:	08-07-09
Photo No.:	42
Direction:	350

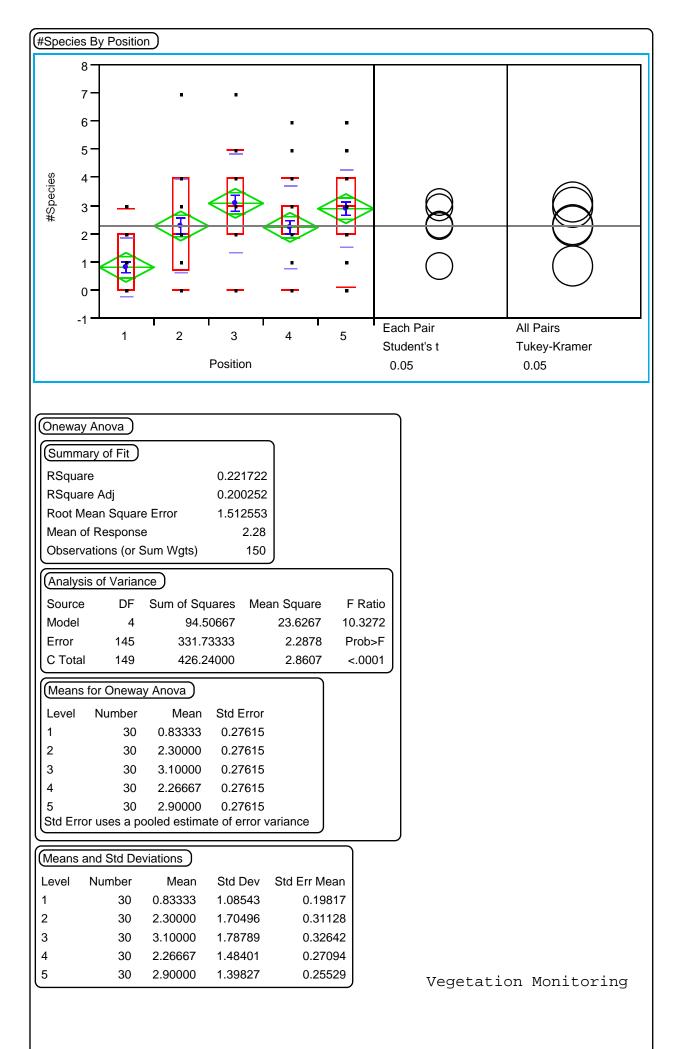

Comments:

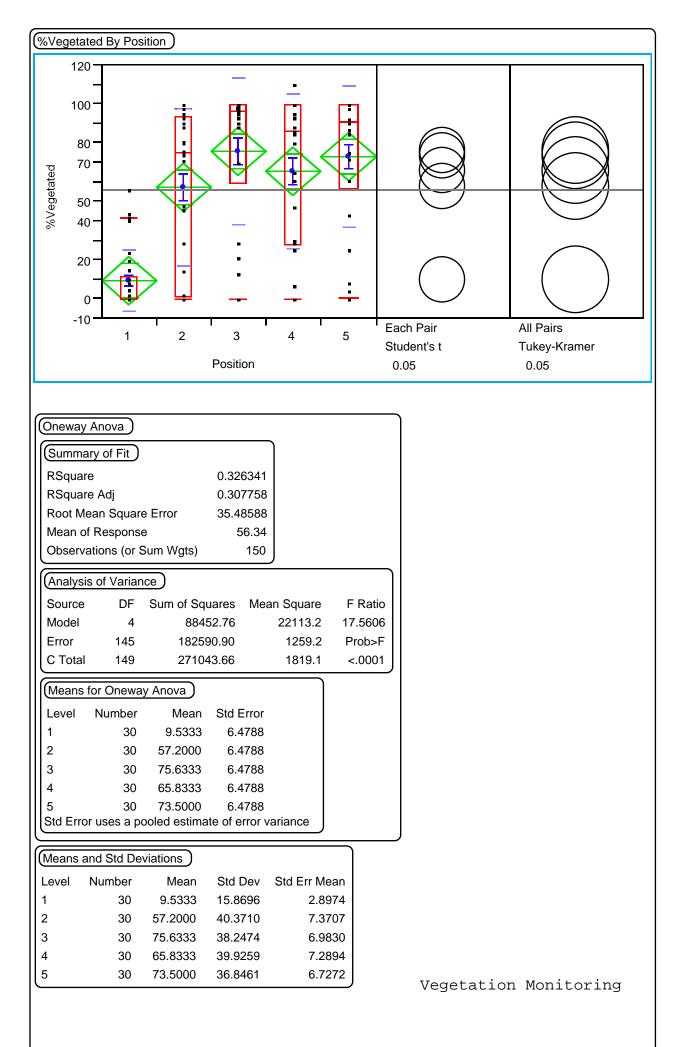

End of panoramic series from Photo Station 6 at Spring outgoing low tide.


Mill Brook Salt Marsh Restoration Project Year 5 Post-Restoration Monitoring

APPENDIX D

Water Level Data




APPENDIX E

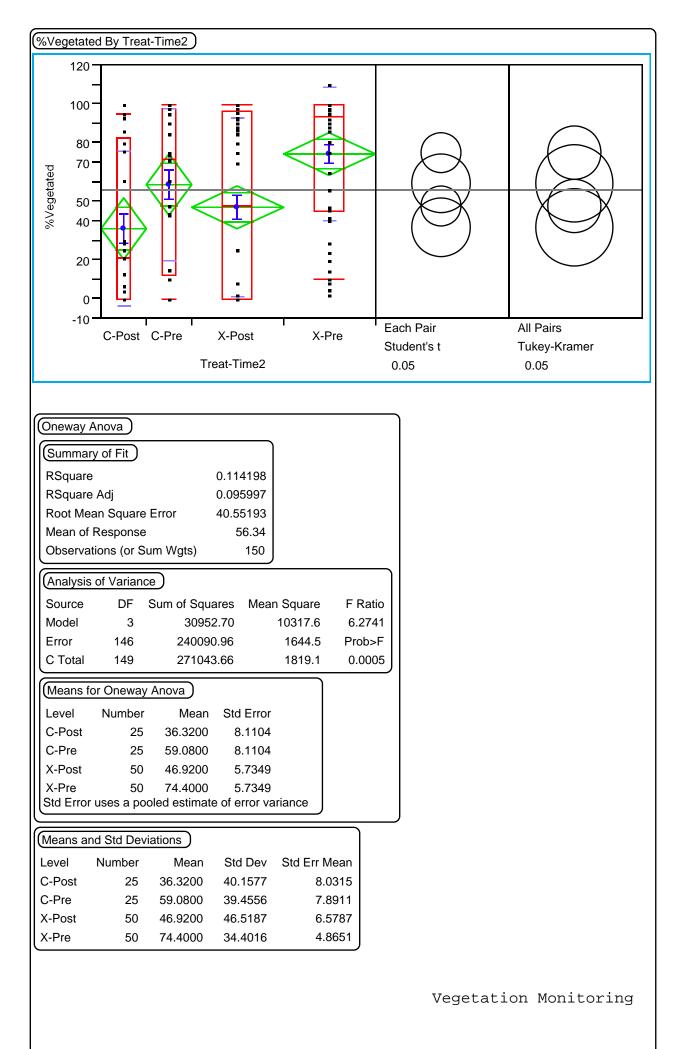
Statistical Analysis Results

- Vegetation Monitoring
- Nekton Sampling
- Mosquito Sampling

Means Compar	risons						
Dif=Mean[i]-Me		3	5	2		4	1
3		00000 0.2	20000	0.80000	0.83	333	2.26667
5	-0.2	20000 0.0	00000	0.60000	0.63	333	2.06667
2	-0.8	.0000 -0.6	60000	0.00000	0.03	333	1.46667
4	-0.8	33333 -0.6	63333	-0.03333	0.00	000	1.43333
1	-2.2	26667 -2.0	06667	-1.46667	-1.43	333	0.00000
Alpha= 0.05							
Comparisons for	r each pair u	sing Student	t's t				
t							
1.97648							
Abs(Dif)-LSD	3	5		2	4		1
3	-0.77189	-0.57189	0.028		6144	1.494	
5	-0.57189	-0.77189			3856	1.294	
2	0.02811	-0.17189			3856	0.694	
4	0.06144	-0.13856			7189	0.661	
1	1.49477	1.29477	0.694		6144	-0.771	89
Positive values s Comparisons for q* 2.76241	r all pairs usi	ing Tukey-Kr	amer HSI	D	ilerent.		
Abs(Dif)-LSD	3	5		2	4		1
3	-1.07883	-0.87883	-0.278		24550	1.187	'84
5	-0.87883	-1.07883	-0.478	83 -0.4	4550	0.987	'84
2	-0.27883	-0.47883	-1.078	83 -1.0)4550	0.387	'84
4	-0.24550	-0.44550	-1.045	50 -1.0	7883	0.354	50
1	1.18784	0.98784	0.387	84 0.3	5450	-1.078	383
Positive values	show pairs o	f means that	t are signi	ficantly dif	fferent.		
Wilcoxon / Krus	skal-Wallis T	ests (Rank S	Sums)				_
		Quine 0 - 1	- M	() /			
	unt Score			(iviean-ivie			
			8.4167 5.9167		-5.3		
)58 392	
			5.5500 3.9000		2.c -0.2		
			3.9000 3.7167			528	
1-way Test, C							
ChiSquare	DF Pi	ob>ChiSq					
35.2170	4	<.0001					

Means Compar	isons)							
Dif=Mean[i]-Me		3	5		4		2	1
3			2.1333	9.8	3000	18.4	333	66.1000
5	-2.	1333	0.0000 7		6667 16.3		000	63.9667
4	-9.	8000 -	7.6667	0.0	0000	8.6	333	56.3000
2	-18.	4333 -1	6.3000	-8.6	6333	0.0	000	47.6667
1	-66.	1000 -6	3.9667	-56.3	3000	-47.6	667	0.0000
Alpha= 0.05								
Comparisons for	r each pair us	sing Studer	nt's t					
t								
1.97648								
Abs(Dif)-LSD	3	5		4		2		1
3	-18.1093	-15.9760		093		3240	47.9	
5	-15.9760			426		093	45.8	
4	-8.3093	-10.4426	-			760	38.1	
2	0.3240	-1.8093		760	-18.1		29.5	-
1	47.9907	45.8574			29.5		-18.1	093
Positive values s Comparisons for q* 2.76241								
Abs(Dif)-LSD	3	5		4		2		1
3	-25.3103	-23.1770	-15.5	5103	-6.8	770	40.7	897
5	-23.1770	-25.3103	-17.6	6437	-9.0	103	38.6	563
4	-15.5103	-17.6437	-25.3	3103	-16.6	6770	30.9	897
2	-6.8770	-9.0103	-16.6	6770	-25.3	8103	22.3	563
1	40.7897	38.6563	30.9	897	22.3	563	-25.3	103
Positive values	show pairs of	means that	t are sig	nificar	ntly diffe	erent.		
Wilcoxon / Krus	kal-Wallis Te	ests (Rank	Sums)					
				<i></i>				
2010. 000		Sum Sco		(Me	an-Mea	-		
			32.2500			-6.1		
			70.6000			-0.6		
			96.1167				939 117	
			35.4500 93.0833				506	
1-way Test, C								
ChiSquare		ob>ChiSq						
44.4168	4	00501134 <.0001						
)

(#Species By Treat-Time)	
	_
8 7- 6- 5- 4- 5- 4- 5- 4- 5- 4- 5- 4- 5- 4- 5- 4- 5- 4- 5- 5- 5- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	
C-Post C-Pre X1-Post X1-Pre X2-Post X2-Pre Student's t Tukey-Kramer Treat-Time 0.05 0.05	
Oneway Anova	
(Summary of Fit)	
RSquare 0.197823	
RSquare Adj 0.169969 Root Mean Square Error 1.540923	
Mean of Response 2.28	
Observations (or Sum Wgts) 150	
(Analysis of Variance)	
Source DF Sum of Squares Mean Square F Ratio	
Model 5 84.32000 16.8640 7.1023	
Error 144 341.92000 2.3744 Prob>F	
C Total 149 426.24000 2.8607 <.0001	
(Means for Oneway Anova)	
Level Number Mean Std Error	
C-Post 25 1.76000 0.30818	
C-Pre 25 2.12000 0.30818	
X1-Post 25 1.64000 0.30818	
X1-Pre 25 2.96000 0.30818 X2-Post 25 1.60000 0.30818	
X2-Pre 25 3.60000 0.30818	
Std Error uses a pooled estimate of error variance	
Means and Std Deviations)	
Level Number Mean Std Dev Std Err Mean	
C-Post 25 1.76000 1.61452 0.32290	
C-Pre 25 2.12000 1.36382 0.27276	
X1-Post 25 1.64000 1.70489 0.34098 X1-Pre 25 2.96000 1.33791 0.26758	
X2-Post 25 1 60000 1 55456 0 31091	
X2-Pre 25 3.60000 1.63299 0.32660 Vegetation Monitorin	g


Means Compari	sons							
Dif=Mean[i]-Mea		2-Pre X	1-Pre	C-Pre	C-	Post >	<1-Post	X2-Post
X2-Pre				.48000			.96000	2.00000
X1-Pre	-0.6	4000 0.0	00000	.84000	1.20		.32000	1.36000
C-Pre	-1.4	8000 -0.8	84000 0	0.00000	0.36	6000 C	.48000	0.52000
C-Post	-1.8	4000 -1.2	20000 -0	.36000	0.00	0000 0	.12000	0.16000
X1-Post	-1.9	6000 -1.3	32000 -0	.48000	-0.12	2000 0	0.00000	0.04000
X2-Post	-2.0	0000 -1.3	36000 -0).52000	-0.16	6000 -0	0.04000	0.00000
Alpha= 0.05								
Comparisons for	each pair u	sing Studen	ťs t					
t								
1.97659								
Abs(Dif)-LSD	X2-Pre	X1-Pre	C-Pr		Post	X1-Pos		
X2-Pre	-0.86148	-0.22148			7852	1.0985		
X1-Pre	-0.22148	-0.86148			3852	0.4585		
C-Pre	0.61852	-0.02148			0148	-0.3814		
C-Post	0.97852	0.33852	-0.5014		5148	-0.7414		
X1-Post	1.09852	0.45852			4148	-0.8614		
X2-Post	1.13852	0.49852	-0.3414		0148	-0.8214	8 -0.86	148
Positive values s Comparisons for					erent.			
comparisons for q*	all pairs USI	ng rukey-K						
ч 2.88849								
Abs(Dif)-LSD	X2-Pre	X1-Pre	C-Pr	e C-	Post	X1-Pos	st X2-F	Post
X2-Pre	-1.25892	-0.61892			3108	0.7010		
X1-Pre	-0.61892	-1.25892			5892	0.0610		
C-Pre	0.22108	-0.41892			9892	-0.7789		
C-Post	0.58108	-0.05892			5892	-1.1389		
X1-Post	0.70108	0.06108	-0.7789		3892	-1.2589		
X2-Post	0.74108	0.10108	-0.7389		9892	-1.2189	2 -1.25	892
Positive values s								
Wilcoxon / Krus	kal-Wallis Te	ests (Rank S	Sums))	
Level C	Count Scor	re Sum So	core Mean	(Mean-l	Mean0)/Std0		
C-Post	25	1565.5	62.620			-1.661		
C-Pre	25	1820	72.800			-0.346		
X1-Post	25	1545	61.800			-1.767		
X1-Pre	25	2277.5	91.100			2.012		
X2-Post	25	1482.5	59.300			-2.089		
X2-Pre	25	2634.5	105.380			3.856		
1-way Test, C	hi-Square A	pproximatio	n					
ChiSquare	DF Pr	ob>ChiSq						
24.4520	5	0.0002						
							J	

	٦
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10]
Student's t Tukey-Kramer	
Treat-Time 0.05 0.05	
Oneway Anova Summary of Fit RSquare 0.114582	
RSquare Adj 0.083839	
Root Mean Square Error40.82371Mean of Response56.34	
Observations (or Sum Wgts) 150	
(Analysis of Variance)	
Source DF Sum of Squares Mean Square F Ratio	
Model 5 31056.78 6211.36 3.7270	
Error 144 239986.88 1666.58 Prob>F	
C Total 149 271043.66 1819.08 0.0033	
Means for Oneway Anova	
Level Number Mean Std Error	
C-Post 25 36.3200 8.1647 C-Pre 25 59.0800 8.1647	
X1-Post 25 47.9200 8.1647	
X1-Pre 25 75.4400 8.1647	
X2-Post 25 45.9200 8.1647	
X2-Pre 25 73.3600 8.1647 Std Error uses a pooled estimate of error variance	
Means and Std Deviations	
Level Number Mean Std Dev Std Err Mean	
C-Post 25 36.3200 40.1577 8.0315	
C-Pre 25 59.0800 39.4556 7.8911	
X1 Dept 25 47 0200 47 4844 0 4060	
X1-Post 25 47.9200 47.4841 9.4968 X1-Pre 25 75.4400 32.7568 6.5514	
X1-Post2547.920047.48419.4968X1-Pre2575.440032.75686.5514X2-Post2545.920046.49019.2980Vegetation Monitorin	a

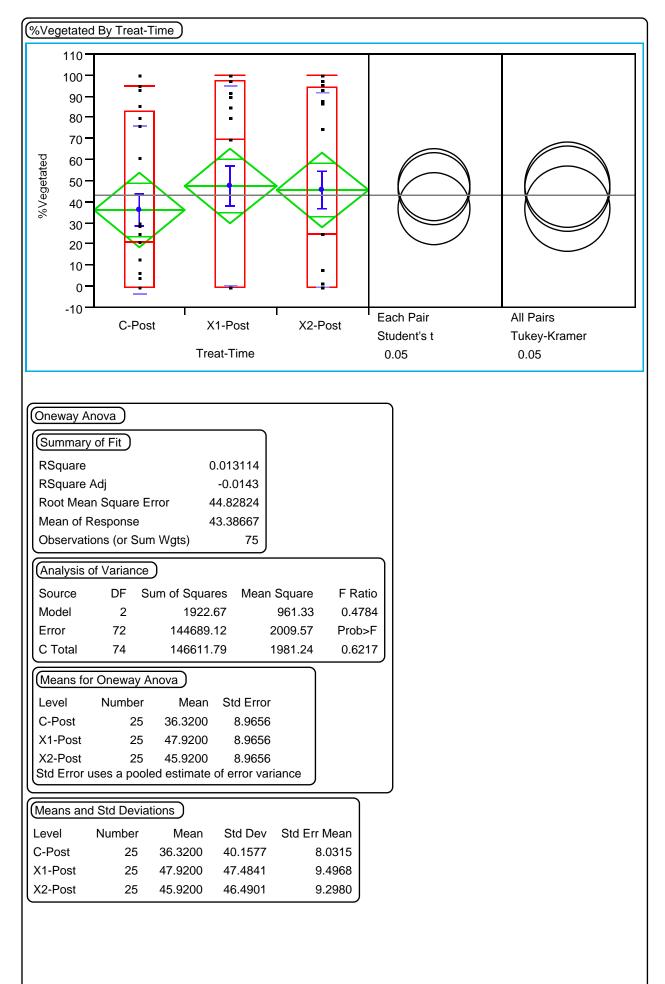
Means Compa	risons								
Dif=Mean[i]-Me		X1-Pre	X2-Pre	9	C-Pre	X1-	-Post	X2-Post	C-Post
X1-Pre	1	0.0000	2.0800		6.3600			29.5200	39.1200
X2-Pre		-2.0800	0.0000		.2800			27.4400	37.0400
C-Pre		-16.3600	-14.2800		0.0000			13.1600	22.7600
X1-Post		-27.5200	-25.4400) -11	.1600	0.	0000	2.0000	11.6000
X2-Post		-29.5200	-27.4400) -13	8.1600	-2.	0000	0.0000	9.6000
C-Post		-39.1200	-37.0400) -22	2.7600	-11.	6000	-9.6000	0.0000
Alpha= 0.05									
Comparisons for	or each pa	air using Stu	dent's t						
t									
1.97659									
Abs(Dif)-LSD	X1-F	Pre X2-		C-Pre		Post	X2-Po		Post
X1-Pre	-22.82			6.4631		6969	6.696		2969
X2-Pre	-20.74		-	8.5431		6169	4.616		2169
C-Pre	-6.46			2.8231		6631	-9.663		0631
X1-Post	4.69		2.6169 -11.6			8231	-20.823		
X2-Post	6.69			9.6631		8231	-22.823		
C-Post	16.29			0.0631		2231	-13.223	31 -22.8	3231
Positive values Comparisons for					antly dif	ferent.			
q*	n all palls	s using Tuke	y-mainer	1130					
2.88849									
Abs(Dif)-LSD	X1-F	Pre X2-	Pre	C-Pre	X1-	Post	X2-Po	st C-	Post
X1-Pre	-33.35		725 -1	6.9925		8325	-3.832	25 5.7	7675
X2-Pre	-31.27			9.0725		9125	-5.912	25 3.6	6875
C-Pre	-16.99	925 -19.0	725 -3	3.3525	-22.	1925	-20.192	25 -10.	5925
X1-Post	-5.83	325 -7.9	125 -2	2.1925	-33.	3525	-31.352	25 -21.7	7525
X2-Post	-3.83	325 -5.9	125 -2	0.1925	-31.	3525	-33.352	25 -23.7	7525
C-Post	5.76	675 3.6	875 -1	0.5925	-21.	7525	-23.752	25 -33.3	3525
Positive values	show pai	rs of means	that are s	significa	antly dif	ferent.			
Wilcoxon / Kru	skal-Wall	is Tests (Ra	nk Sums)	D)	
Level	Count	Score Sum	Score N	lean	(Mean-	Mean)/Std0		
C-Post	25	1361		4400	(moail-		-2.685		
C-Pre	25 25	1885.5		4200			-0.008		
X1-Post	25	1619		7600			-0.000		
X1-Pre	25	2452.5		1000			2.881		
X2-Post	25	1599		9600			-1.470		
X2-Pre	25	2408		3200			2.654		
1-way Test, 0				-			-		
ChiSquare	DF	Prob>Chi	Sq						
22.2031	5	0.00	-						
								J	

#Species By Treat-Time2)
87
7-
5
C-Post C-Pre X-Post X-Pre Each Pair All Pairs Student's t Tukey-Kramer
Treat-Time2 0.05 0.05
Oneway Anova
Summary of Fit
RSquare 0.185764
RSquare Adj 0.169033
Root Mean Square Error 1.541792
Mean of Response2.28Observations (or Sum Wgts)150
(Analysis of Variance)
SourceDFSum of SquaresMean SquareF RatioModel379.1800026.393311.1031
Error 146 347.06000 2.3771 Prob>F
C Total 149 426.24000 2.8607 <.0001
(Means for Oneway Anova)
Level Number Mean Std Error
C-Post 25 1.76000 0.30836
C-Pre 25 2.12000 0.30836
X-Post 50 1.62000 0.21804
X-Pre 50 3.28000 0.21804 Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean
C-Post 25 1.76000 1.61452 0.32290
C-Pre 25 2.12000 1.36382 0.27276
X-Post 50 1.62000 1.61485 0.22837 X-Pre 50 3.28000 1.51240 0.21389
Vegetation Monitoring

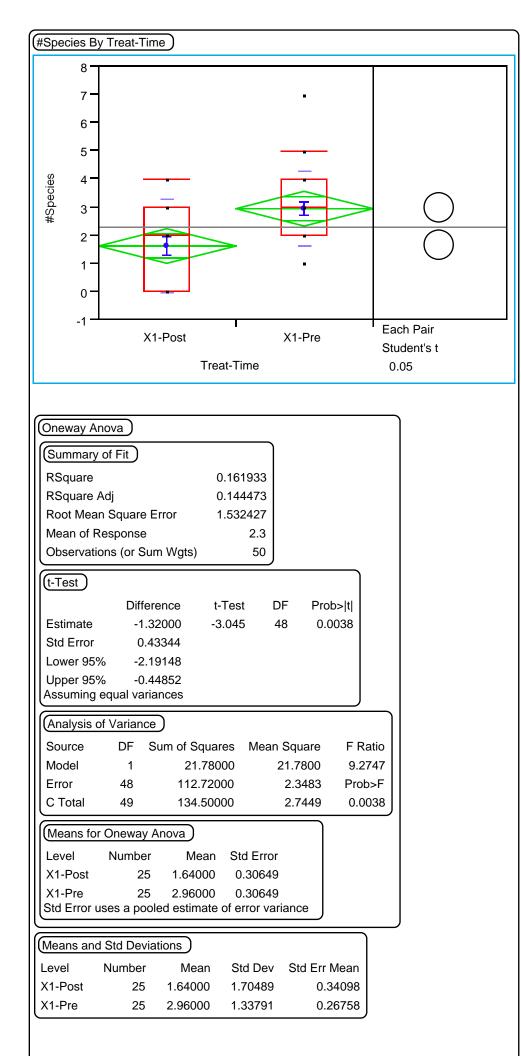
)
(Means Compari		_		-	_	
Dif=Mean[i]-Mea		Pre	C-Pre		Post	X-Post
X-Pre	0.00		1.16000		2000	1.66000
C-Pre	-1.16		0.00000		6000	0.50000
C-Post	-1.52		0.36000		0000	0.14000
X-Post	-1.66	- 000	0.50000	-0.14	4000	0.00000
Alpha= 0.05						
Comparisons for	each pair us	ing Stude	ent's t			
t						
1.97636			_			
Abs(Dif)-LSD	X-Pre	C-P	-	Post		Post
X-Pre	-0.60943	0.4136		'361	1.05	
C-Pre	0.41361	-0.8618			-0.24	
C-Post	0.77361	-0.5018		6186	-0.60	
X-Post	1.05057	-0.2463	-0.60)639	-0.60	943
Positive values s Comparisons for q* 2.59888					itly diffe	erent.
Abs(Dif)-LSD	X-Pre	C-P	re C-	Post	X-F	Post
X-Pre	-0.80139	0.1785	0.53	8851	0.85	861
C-Pre	0.17851	-1.1333	3 -0.77	7333	-0.48	149
C-Post	0.53851	-0.7733	3 -1.13	3333	-0.84	149
X-Post	0.85861	-0.4814	9 -0.84	149	-0.80	139
Positive values s	show pairs of	means th	nat are sig	nificar	ntly diffe	erent.
Wilcoxon / Krus	kal-Wallis Te	sts (Ranl	(Sums)			
	ount Score	Sum S	core Mear	n (M	ean-Me	ean0)/Std0
C-Post	25 15	65.5	62.6200)		-1.661
C-Pre	25 1	820	72.8000)		-0.346
X-Post	50 30	27.5	60.5500)		-3.051
X-Pre	50 4	1912	98.2400)		4.641
1-way Test, C	hi-Square Ap	proximat	ion			
ChiSquare	DF Pro	b>ChiSq				
22.9916	3	<.0001				

(Means Comparisons) Dif=Mean[i]-Mean[j] X-Pre C-Pre X-Post C-Post X-Pre 0.0000 15.3200 27.4800 38.0800
X-Pre 0.0000 15.3200 27.4800 38.0800
C-Pre -15.3200 0.0000 12.1600 22.7600
X-Post -27.4800 -12.1600 0.0000 10.6000
C-Post -38.0800 -22.7600 -10.6000 0.0000
Alpna= 0.05 Comparisons for each pair using Student's t
t
1.97636
Abs(Dif)-LSD X-Pre C-Pre X-Post C-Post
X-Pre -16.0291 -4.3115 11.4509 18.4485
C-Pre -4.3115 -22.6685 -7.4715 0.0915
X-Post 11.4509 -7.4715 -16.0291 -9.0315
C-Post 18.4485 0.0915 -9.0315 -22.6685
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.59888
Abs(Dif)-LSD X-Pre C-Pre X-Post C-Post
X-Pre -21.0779 -10.4950 6.4021 12.2650
C-Pre -10.4950 -29.8086 -13.6550 -7.0486
X-Post 6.4021 -13.6550 -21.0779 -15.2150
C-Post 12.2650 -7.0486 -15.2150 -29.8086
Positive values show pairs of means that are significantly different.
Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
Level Count Score Sum Score Mean (Mean-Mean0)/Std0
C-Post 25 1361 54.4400 -2.685
C-Pre 25 1885.5 75.4200 -0.008
X-Post 50 3218 64.3600 -2.246
X-Pre 50 4860.5 97.2100 4.378
1-way Test, Chi-Square Approximation
ChiSquare DF Prob>ChiSq
22.1772 3 <.0001

#Species By Treat-Time)		
6		
5- •		
4		
secience and the secien		
-1 -1	Each Pair	
C-Post C-Pre	Student's t	
Treat-Time	0.05	
Quantiles		
	75.0% 90.0% (maximum
C-Post 0 0 0 2	3 4	5
C-Pre 0 0 1 2	3 4	4
Oneway Anova		
Summary of Fit		
RSquare 0.014887		
RSquare Adj -0.00564		
Root Mean Square Error 1.494434		
Mean of Response 1.94		
Observations (or Sum Wgts) 50		
(t-Test)		
Difference t-Test DF Prob> t		
Estimate -0.36000 -0.852 48 0.3986 Std Error 0.42269		
Lower 95% -1.20987		
Upper 95% 0.48987		
Assuming equal variances		
Analysis of Variance		
Source DF Sum of Squares Mean Square F Ra	tio	
Model 1 1.62000 1.62000 0.72		
Error 48 107.2000 2.23333 Prob		
C Total 49 108.82000 2.22082 0.39		
	<u> </u>	
(Means for Oneway Anova)		
Level Number Mean Std Error		
C-Post 25 1.76000 0.29889		
C-Post 25 1.76000 0.29889 C-Pre 25 2.12000 0.29889 Std Error uses a pooled estimate of error variance		

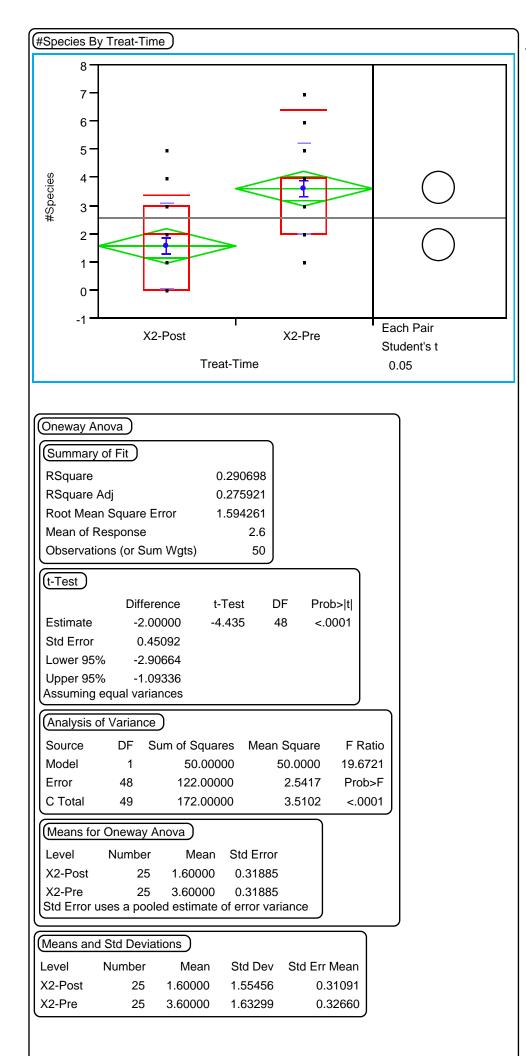

(Means and Std Deviations)	
Level Number Mean Std Dev Std Err Mean	
C-Post 25 1.76000 1.61452 0.32290	
C-Pre 25 2.12000 1.36382 0.27276	
Means Comparisons	
Dif=Mean[i]-Mean[j] C-Pre C-Post	
C-Pre 0.000000 0.360000	
C-Post -0.36 0.000000	
Alpha= 0.05	
Comparisons for each pair using Student's t	
t	
2.01063	
Abs(Dif)-LSD C-Pre C-Post	
C-Pre -0.84987 -0.48987	
C-Post -0.48987 -0.84987	
Positive values show pairs of means that are significantly different.	
Wilcoxon / Kruskal-Wallis Tests (Rank Sums)	
Level Count Score Sum Score Mean (Mean-Mean0)/Std0)
C-Post 25 589.5 23.5800 -0.950)
)
C-Pre 25 685.5 27.4200 0.950	
C-Pre 25 685.5 27.4200 0.950	
C-Pre 25 685.5 27.4200 0.950 2-Sample Test, Normal Approximation	
C-Pre 25 685.5 27.4200 0.950 2-Sample Test, Normal Approximation S Z Prob> Z	
C-Pre 25 685.5 27.4200 0.950 2-Sample Test, Normal Approximation S Z Prob> Z 685.5 0.94995 0.3421	

%Vegetate	d By Treat-	Time						
120-	<u> </u>					1		
100-	1 _							
	_	-						
80 -	1	-					\frown	
σ α							$\langle \rangle$	
-09 -09 -09]	~	\leq		\nearrow	1 (\sim	
0 0 40		T	<u> </u>				XX	
≫ 40 - %	\leftarrow	1	\geq			(()	
20-	4 7	<u></u>		_			\smile	
20		•						
0-	김 ㄴ	<u> </u>						
-20 -						Each I	Doir	
	C	C-Post		C-Pre		Stude		
			Treat-Time			0.05	1131	
						0.00		
Quantiles	<u> </u>							
		40.00		0/			00.00/	
Level	minimum	10.0%				′5.0%	90.0%	maximum
C-Post	0 0		0 12		1 2	83	95 100	100
C-Pre	0		0 12	.5 /	2	98	100	100
Oneway A	nova							
Summary	(of Fit							
			0.070440					
RSquare	۸di		0.078449					
RSquare Root Mer	an Square E	Frror	0.05925 39.80821					
	Response		47.7					
	ions (or Su	m Wats)	-7.7					
				J	_			
(t-Test								
	Differ	ence	t-Test	DF Prol	b> t			
Estimate	-22.	7600	-2.021	48 0.0)488			
Std Error	11.	2595						
Lower 95	% -45.	3986						
Upper 95		1214						
Assuming	equal varia	ances						
Analysis	of Variance	•)						
Source	DF S	_ Sum of Sq	uares Me	an Square	F Rat	tio		
Model	1	-	5.220	6475.22	4.08			
Error	48		5.280	1584.69	Prob>			
C Total	49	8254	0.500	1684.50	0.04	88		
	r Oneway A							
Level	Number	Mea						
C-Post	25	36.3200						
C-Pre Std Error	25 Uses a pool	59.0800 led estima	0 7.961 ate of error					


(Means ar	nd Std Devi	ations)			
Level	Number	Mean	Std Dev	Std Err Mea	in
C-Post	25	36.3200	40.1577	8.031	5
C-Pre	25	59.0800	39.4556	7.891	1
Means C	omparisons	3			
Dif=Mear	n[i]-Mean[j]	C-Pre	e C-Po	st	
C-Pre		0.0000) 22.760	00	
C-Post		-22.7600	0.000	00	
Alpha=	0.05				
Comparis	ons for eac	h pair using	Student's t		
	t				
2.0106	33				
Abs(Dif)-	LSD	C-Pre	C-Post		
C-Pre	-22	2.6386	0.1214		
C-Post	(0.1214 -2	2.6386		
Positive v	alues show	pairs of mea	ans that are	significantly	different.
Wilcoxon	(16	Nollie Toete ((Rank Sum	s))	
1.1.1.00.001	i / Kruskai-v	vallis 1 6515 (
	i / Kruskai-v		(
Level		Score Sun		_	n-Mean0)/Std0
	Count		n Score N	_	n-Mean0)/Std0 -1.904
Level	Count	Score Sun 540	n Score M 0 21.6	lean (Mear	
Level C-Post C-Pre	Count 25 25	Score Sun 540	n Score M 0 21.6 5 29.4	lean (Mear 6000	-1.904
Level C-Post C-Pre	Count 25 25	Score Sun 540 738	n Score M 0 21.6 5 29.4 kimation	lean (Mear 6000	-1.904
Level C-Post C-Pre	Count t 25 25 ble Test, No S	Score Sun 54(73) prmal Approx Z Prob	n Score M 0 21.6 5 29.4 kimation	lean (Mear 6000	-1.904
Level C-Post C-Pre 2-Samp	Count t 25 25 ble Test, No S 735 1.9	Score Sun 54(73) prmal Approx Z Prob	n Score M 0 21.6 5 29.4 kimation b> Z 0569	lean (Mear 6000	-1.904
Level C-Post C-Pre 2-Samp	Count t 25 25 ble Test, No S 735 1.9 Test, Chi-So	Score Sun 54(738 ormal Approx Z Prob 00438 0.0	n Score M 0 21.6 5 29.4 kimation >> Z 0569 ximation	lean (Mear 6000	-1.904

Oneway Anova Surrmary of Fit RSquare Adj Not Mean Surrmary of Fit RSquare Adj Observations (or Sum Wgts) 75 Analysis of Variance/ Doservations (or Sum Wgts) Surre 0.34667 0.17333 0.0656 Error To the Surron 0.32517 X2-Post 25 1.60060 0.32517 X2-Post 25 1.6000 0.32517 X2-Post 25 1.60000 1.61452 0.7000 0.32517 X2-Post 25 1.60000 1.61452 2.76000 1.61452 2.76000 1.61452 2.7901 25	(#Species By Treat-Time)
Treat-Time 0.05 0.05 Oneway Anova Summary of Fit Rsquare 0.01818 Rsquare 0.02591 Rot Mean Square Error 1.625833 Mean of Response 1.666667 Observations (or Sum Wgts) 75 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 0.34667 0.17333 0.0656 Error 72 190.32000 2.64333 Prob>F Cotal 74 190.66667 2.57658 0.9366 Description Means for Oneway Anova Level Number Mean Std Error Level Number Mean Std Error 2.5 1.6000 0.32517 X1-Post 2.5 1.6000 0.32517 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-Post 2.5 1.6000 1.61452 0.32290 3.4098	signal of the second se
Summary of Fit RSquare 0.001818 RSquare Adj -0.02591 Root Mean Square Error 1.625833 Mean of Response 1.666667 Observations (or Sum Wgts) 75 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 0.34667 0.17333 0.0656 Error 72 190.32000 2.64333 Prob>F C Total 74 190.66667 2.57658 0.9366 Means for Oneway Anova Level Number Mean Std Error C-Post 25 1.6000 0.32517 X1-Post 25 1.6000 0.32517 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Err Mean Level Number Mean Std Err Mean C-Post 25 1.6000 0.32517 X2-Post 25 1.6000 0.32517 Std Error uses a pooled estimate of error variance Std Error Std Error </td <td></td>	
Level Number Mean Std Error C-Post 25 1.76000 0.32517 X1-Post 25 1.64000 0.32517 X2-Post 25 1.60000 0.32517 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-Post 25 1.76000 1.61452 0.32290 X1-Post 25 1.64000 1.70489 0.34098	RSquare 0.001818 RSquare Adj -0.02591 Root Mean Square Error 1.625833 Mean of Response 1.666667 Observations (or Sum Wgts) 75 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 0.34667 0.17333 0.0656 Error 72 190.32000 2.64333
Level Number Mean Std Dev Std Err Mean C-Post 25 1.76000 1.61452 0.32290 X1-Post 25 1.64000 1.70489 0.34098	Level Number Mean Std Error C-Post 25 1.76000 0.32517 X1-Post 25 1.64000 0.32517 X2-Post 25 1.60000 0.32517
	Level Number Mean Std Dev Std Err Mean C-Post 25 1.76000 1.61452 0.32290 X1-Post 25 1.64000 1.70489 0.34098

Means Compar	isons)					
Dif=Mean[i]-Me	an[j]	C-Post	X1-	Post	X2-Post	
C-Post	0.0	00000	0.120	0000	0.160000	
X1-Post		-0.12	0.00	0000	0.040000	
X2-Post		-0.16	-	0.04	0.000000	
Alpha= 0.05						
Comparisons for	r each pair	using Stu	udent's	st		
t						
1.99347						
Abs(Dif)-LSD	C-Pos		Post	X2-F		
C-Post	-0.91671		-	-0.75	-	
X1-Post	-0.79671		-	-0.87	-	
X2-Post	-0.75671		••••	-0.91		
Positive values s Comparisons for	show pairs	of means	s that a	are sigi	nificantly different.	
q*	r an pans u	Sing Tuk	5y-1116			
2.39313						
Abs(Dif)-LSD	C-Pos	t X1-I	Post	X2-F	Post	
C-Post	-1.10050	.0.98	8050	-0.94	050	
X1-Post	-0.98050) -1.10	050	-1.06	050	
X2-Post	-0.94050	0 -1.06	6050	-1.10	050	
Positive values	show pairs	of means	s that a	are sigi	nificantly different.	
	1 1 1 1 1 1 1 1 1	T (/D				
(Wilcoxon / Krus	skai-vvallis	i ests (Ra	ank St	ums)		
Level (Count Sc	ore Sum	Sco	ore Mea	ın (Mean-Mean0)/Std0
C-Post	25	974.5		38.980	(0.282
X1-Post	25	943		37.720	0 -	0.076
X2-Post	25	932.5		37.300	0 -	0.200
1-way Test, C	hi-Square	Approxim	nation			
ChiSquare	DF F	Prob>Chi	Sq			
0.0882	2	0.95	69			


					\neg
(Means Compa	risons)				
Dif=Mean[i]-Me	ean[j] X1	-Post X	2-Post	C-Post	
X1-Post	0	.0000	2.0000	11.6000	
X2-Post	-2	0000	0.0000	9.6000	
C-Post	-11	.6000 -	9.6000	0.0000	
Alpha= 0.05					
Comparisons fo	r each pair u	sing Studer	nt's t		
t					
1.99347					
Abs(Dif)-LSD	X1-Post	X2-Pos	t C-P	ost	
X1-Post	-25.2759				
X2-Post	-23.2759				
C-Post	-13.6759	-15.6759	9 -25.27	59	
Positive values Comparisons fo				ficantly different.	
q*	r all pairs us	ng Tukey-r		D	
ч 2.39313					
Abs(Dif)-LSD	X1-Post	X2-Pos	t C-P	nst	
X1-Post	-30.3434				
X2-Post	-28.3434		-	34	
C-Post	-18.7434	-20.7434	4 -30.34	34	
Positive values	show pairs o	f means tha	at are signi	ficantly different.	
	•				
(Wilcoxon / Krus	skal-Wallis T	ests (Rank	Sums)		
L es vel	Count Coo				
			core Mear	(
C-Post X1-Post	25 25	894.5 970	35.7800 38.8000		-0.642 0.228
X1-Post X2-Post	25 25	970 985.5	38.8000		0.228
AZ-F051	20	900.0	39.4200	,	0.409
1-way Test, C	Chi-Square A	pproximatio	on		
ChiSquare	DF P	ob>ChiSq			
0.4307	2	0.8063			

Maana Comp	ariaana			
(Means Comp				
Dif=Mean[i]-N	lean[j]	X1-Pre	X1-Post	
X1-Pre		0.00000	1.32000	
X1-Post		-1.32000	0.00000	
Alpha= 0.0	5			
Comparisons f	or each p	air using Stu	dent's t	
t				
2.01063				
Abs(Dif)-LSD	X1-	Pre X1-P	ost	
X1-Pre	-0.87	148 0.448	521	
X1-Post	0.448	521 -0.87 ⁻	148	
Positive values	s show pa	irs of means	that are signific	cantly different.
Wilcoxon / Kr	uskal-Wal	lis Tests (Ra	nk Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
X1-Post	25	519.5	20.7800	-2.341
X1-Pre	25	755.5	30.2200	2.341
2-Sample T	est, Norm	al Approxima	ation	
S		Z Prob> Z	[]	
755.5	2.3414		1	
1-way Test,	Chi-Squa	re Approxima	ation	
ChiSquare	DF	Prob>ChiS	Sq	
5.5293	1	0.018	87	
)

(%Vegetated By Treat-Time)			
120			
80-			
		\prec	
% A C C C C C C C C C C C C C C C C C C		\mathcal{I}	
20 -			
0-			
-20	Each Pair		
X1-Post X1-Pre	Student's		
Treat-Time	0.05		
(Quantiles)	75.00/		
Level minimum 10.0% 25.0% median	75.0%	90.0%	maximum
X1-Post0070X1-Pre1018.44492	98 100	100 100	100 100
		100	100
(Oneway Anova)			
Summary of Fit			
RSquare 0.105973			
RSquare Adj 0.087348			
Root Mean Square Error 40.79062			
Mean of Response 61.68			
Observations (or Sum Wgts) 50			
(t-Test)			
Difference t-Test DF Prob> t			
Estimate -27.5200 -2.385 48 0.0211			
Std Error 11.5373			
Lower 95% -50.7173			
Upper 95% -4.3227 Assuming equal variances			
(Analysis of Variance) Source DF Sum of Squares Mean Square F R	Ratio		
	5897		
	b>F		
)211		
(Means for Oneway Anova)			
Level Number Mean Std Error			
X1-Post 25 47.9200 8.1581			
X1-Pre 25 75.4400 8.1581			
Std Error uses a pooled estimate of error variance			

Maana and St)
(Means and Si					
	umber	Mean		Std Err Mean	
X1-Post	25	47.9200	-	9.4968	
X1-Pre	25	75.4400	32.7568	6.5514	J
Means Comp	arisons				
Dif=Mean[i]-M	lean[j]	X1-Pre	X1-Post		
X1-Pre		0.0000	27.5200		
X1-Post		-27.5200	0.0000		
Alpha= 0.0	5				
Comparisons f	or each p	air using St	udent's t		
t					
2.01063					
Abs(Dif)-LSD	X1-	Pre X1-	Post		
X1-Pre	-23.1	973 4.3	3227		
X1-Post	4.3	227 -23.	1973		
Positive values	s show pa	airs of mean	s that are s	ignificantly diffe	erent.
Wilcoxon / Kr	uskal-Wa	llis Tests (R	ank Sums))	
				•	
Level	Count	Score Sum	Score M	ean (Mean-N	lean0)/Std0
X1-Post	25	510	20.4	000	-2.517
X1-Pre	25	765	30.6	000	2.517
2-Sample T	est, Norm	al Approxim	nation		
S		Z Prob>	Z		
765	2.516	80 0.01	18		
1-way Test,	Chi-Squa	are Approxir	nation		
ChiSquare	DF	Prob>Ch	iSq		
6.3843	1	0.0	115		

(Means Comp	arisons			
Dif=Mean[i]-N	lean[j]	X2-Pre	X2-Post	
X2-Pre		0.00000	2.00000	
X2-Post		-2.00000	0.00000	
Alpha= 0.0	5			
Comparisons f	or each p	air using Stu	dent's t	
t				
2.01063				
Abs(Dif)-LSD	X2-	Pre X2-P	ost	
X2-Pre	-0.90	664 1.093	336	
X2-Post	1.09	336 -0.90	664	
Positive values	s show pa	airs of means	that are signific	cantly different.
Wilcoxon / Kr	uskal-Wa	llis Tests (Ra	nk Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
X2-Post	25	450.5	18.0200	-3.684
X2-Pre	25	824.5	32.9800	3.684
2-Sample T	est, Norm	al Approxima	ation	
S		Z Prob> Z	[
824.5	3.683	-	-	
1-way Test,	Chi-Squa	are Approxim	ation	
ChiSquare	DF	Prob>Chi	Sq	
13.6444	1	0.00	02	

%Vegetated By Treat-Time)
120
80-
40
20 -
0
-20
X2-Post X2-Pre Each Pair
Treat-Time 0.05
0.00
Oneway Anova
Summary of Fit
RSquare 0.100697
RSquare Adj 0.081962
Root Mean Square Error 41.84684
Mean of Response 59.64
Observations (or Sum Wgts) 50
(t-Test)
Difference t-Test DF Prob> t
Estimate -27.4400 -2.318 48 0.0247
Std Error 11.8361
Lower 95% -51.2380
Upper 95% -3.6420
Assuming equal variances
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 9411.920 9411.92 5.3747 Error 48 84055.600 4754.16 Brobs E
Error 48 84055.600 1751.16 Prob>F C Total 49 93467.520 1907.50 0.0247
(Means for Oneway Anova)
Level Number Mean Std Error
X2-Post 25 45.9200 8.3694
X2-Pre 25 73.3600 8.3694 Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean
X2-Post 25 45.9200 46.4901 9.2980
X2-Pre 25 73.3600 36.6195 7.3239

Vegetation Sampling

(Means Comp				
Dif=Mean[i]-M	lean[j]	X2-Pre		
X2-Pre		0.0000	27.4400	
X2-Post		-27.4400	0.0000	
Alpha= 0.0	5			
Comparisons	for each p	pair using Stu	dent's t	
t				
2.01063				
Abs(Dif)-LSD	X2-	-Pre X2-P	Post	
X2-Pre	-23.7	980 3.64	420	
X2-Post	3.6	420 -23.7	980	
Positive value	s show pa	airs of means	that are signific	cantly different.
Wilcoxon / Kr	uskal-Wa	llis Tests (Ra	nk Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
X2-Post	25	504	20.1600	-2.610
X2-Pre	25	771	30.8400	2.610
2-Sample T	est, Norn	nal Approxima	ation	
s		Z Prob> Z	2	
771	2.610		•	
1-way Test,	Chi-Squa	are Approxim	ation	
ChiSquare	DF	Prob>Chi	Sq	
6.8638	1	0.00	88	

#Species By Treat-Time
good C-2006 C-2009 C-2009 C-2006 C-Pre X1-2006 X1-Pre X2-2009 Treat-Time X1-2009 X2-2006 X2 Student's t 0.05 0.05
Oneway Anova Summary of Fit RSquare 0.536256 RSquare Adj 0.498781 Root Mean Square Error 0.887768 Mean of Response 1.583333 Observations (or Sum Wgts) 108
Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 8 90.22500 11.2781 14.3100 Error 99 78.02500 0.7881 Prob>F C Total 107 168.25000 1.5724 <.0001
Means for Oneway Anova Level Number Mean Std Error C-2006 16 1.37500 0.22194 C-2009 16 2.68750 0.22194 C-Pre 16 2.43750 0.22194 X1-2006 10 1.10000 0.28074 X1-2009 10 2.20000 0.28074 X1-Pre 10 0.00000 0.28074 X2-2006 10 1.40000 0.28074 X2-2009 10 2.00000 0.28074 X2-2009 10 2.00000 0.28074 X2-Pre 10 0.00000 0.28074 Std Error uses a pooled estimate of error variance 0.28074 0.28074

Means and	Std Deviat	ions)										
	Number	Mean	Std Dev	Std Err	Mean							
C-2006	16	1.37500	1.08781		27195							
C-2009	16	2.68750	0.94648		23662							
C-Pre	16	2.43750	0.72744		18186							
X1-2006	10	1.10000	0.99443		31447							
X1-2009	10	2.20000	1.03280		32660							
X1-Pre	10	0.00000	0.00000		00000							
X2-2006	10	1.40000	0.96609		30551							
X2-2009	10	2.00000	1.15470		36515							
X2-2003	10	0.00000	0.00000		00000							
		0.00000	0.00000	0.0								
(Means Com												
Dif=Mean[i]	-Mean[j]	C-2009	C-Pre			-2009	X2-20			X1-2006	X1-Pre	X2-Pre
C-2009		0.00000	0.25000			68750	1.287		31250	1.58750	2.68750	2.68750
C-Pre		-0.25000	0.00000			43750	1.037		06250	1.33750	2.43750	2.43750
X1-2009		-0.48750	-0.23750			20000	0.800		82500	1.10000	2.20000	2.20000
X2-2009		-0.68750	-0.43750			00000	0.600		62500	0.90000	2.00000	2.00000
X2-2006		-1.28750	-1.03750			60000	0.000		02500	0.30000	1.40000	1.40000
C-2006		-1.31250	-1.06250	-0.82	500 -0.	62500	-0.025	500 O.	00000	0.27500	1.37500	1.37500
X1-2006		-1.58750	-1.33750			90000	-0.300		27500	0.00000	1.10000	1.10000
X1-Pre		-2.68750	-2.43750) -2.20	000 -2.	00000	-1.400	.000 -1.	37500	-1.10000	0.00000	0.00000
X2-Pre		-2.68750	-2.43750) -2.20	000 -2.	00000	-1.400	.000 -1.	37500	-1.10000	0.00000	0.00000
Alpha= 0.	.05											
Comparisons	s for each	pair using S	tudent's t									
t t												
1.98423												
Abs(Dif)-LS	D C-2	2009	C-Pre X	1-2009	X2-2009	X2-2	006	C-2006			-Pre X	2-Pre
C-2009	-0.62	2280 -0.3	37280 -0	.22260	-0.02260	0.57	740	0.68970	0.877	40 1.97	7740 1.9	97740
C-Pre	-0.37	7280 -0.6	62280 -0	.47260	-0.27260	0.32	740	0.43970	0.627	40 1.72	2740 1.7	2740
X1-2009	-0.22	2260 -0.4	-0	.78778	-0.58778	0.01	222	0.11490	0.312	22 1.4	1222 1.4	1222
X2-2009	-0.02	2260 -0.2	27260 -0	.58778	-0.78778	-0.18	778	-0.08510	0.112	22 1.2		21222
X2-2006	0.57	7740 0.3	82740 0	.01222	-0.18778	-0.78	778	-0.68510	-0.487	78 0.6	1222 0.6	61222
C-2006	0.68	3970 0.4	3970 0	.11490	-0.08510	-0.68	510	-0.62280	-0.435	510 0.66	6490 0.6	6490
X1-2006	0.87	7740 0.6	62740 0	.31222	0.11222	-0.48	778	-0.43510	-0.787	78 0.3	1222 0.3	31222
X1-Pre	1.97	7740 1.7	2740 1	.41222	1.21222	0.61	222	0.66490	0.312	22 -0.78	8778 -0.7	78778
X2-Pre	1.97	7740 1.7	2740 1	.41222	1.21222	0.61	222	0.66490	0.312	22 -0.78	8778 -0.7	78778
Positive valu Comparisons q*	ies show p s for all pai	airs of mear irs using Tu	ns that are s key-Kramer	significant HSD	ly differen	t.						
3.17152												
Abs(Dif)-LS		2009	C-Pre X	1-2009	X2-2009	X2-2	006	C-2006	X1-20	06 X1	-Pre X	2-Pre
C-2009				.64749	-0.44749	0.15		0.31705				55251
C-2003 C-Pre				.89749	-0.69749	-0.09		0.06705				30251 30251
X1-2009				.25916	-1.05916	-0.03		-0.30999				94084
X1-2009 X2-2009				.05916	-1.25916	-0.43		-0.50999				74084 74084
X2-2009 X2-2006				.45916	-0.65916			-1.10999				4084 4084
C-2006				.30999	-0.50999	-1.10		-0.99545				24001
X1-2006				.15916	-0.35916	-0.95		-0.85999				15916
X1-Pre				.94084	0.74084	0.14		0.24001	-0.159			25916 25016
X2-Pre				.94084	0.74084	0.14	004	0.24001	-0.159	-1.2	5916 -1.2	25916
Positive valu	ies show p	airs of meai	ns that are s	significant	iy aifferen	ι.						

Wilcoxon / Kru	uskal-Wal	lis Tests (Ran	k Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
C-2006	16	787	49.1875	-0.753
C-2009	16	1289.5	80.5938	3.715
C-Pre	16	1215	75.9375	3.051
X1-2006	10	429.5	42.9500	-1.256
X1-2009	10	712	71.2000	1.818
X1-Pre	10	150	15.0000	-4.307
X2-2006	10	507.5	50.7500	-0.404
X2-2009	10	645.5	64.5500	1.092
X2-Pre	10	150	15.0000	-4.307
1-way Test,	Chi-Squa	re Approximat	tion	
ChiSquare	DF	Prob>ChiSo	9	
59.6889	8	<.0002	1	

FishAbundance By Treat-Time
Purper de la construction de la
Oneway Anova Summary of Fit RSquare 0.175649 RSquare Adj 0.109035 Root Mean Square Error 4.404586 Mean of Response 1.898148 Observations (or Sum Wgts) 108
Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 8 409.2421 51.1553 2.6368 Error 99 1920.6375 19.4004 Prob>F C Total 107 2329.8796 21.7746 0.0116
Means for Oneway Anova Level Number Mean Std Error C-2006 16 0.37500 1.1011 C-2009 16 1.87500 1.1011 C-Pre 16 5.56250 1.1011 X1-2006 10 3.00000 1.3929 X1-2009 10 0.20000 1.3929 X1-Pre 10 0.00000 1.3929 X2-2006 10 1.00000 1.3929 X2-2009 10 3.80000 1.3929 X2-Pre 10 0.00000 1.3929 X2-Pre 10 0.00000 1.3929 X2-Pre 10 0.00000 1.3929 X2-Pre 10 0.00000 1.3929 Std Error uses a pooled estimate of error variance Std Error uses a pooled estimate of error variance

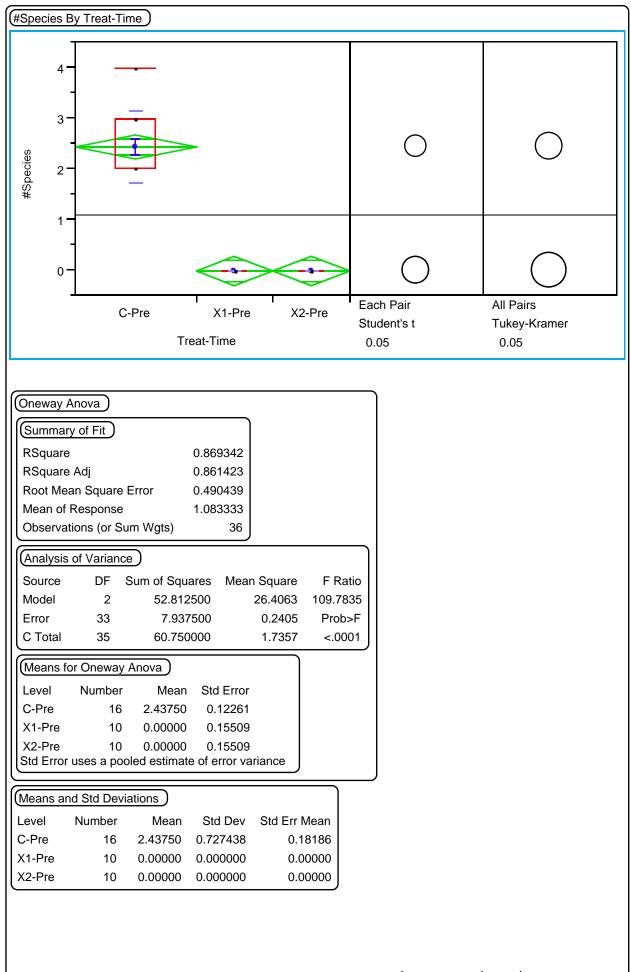
Means and	Std Deviati	ions)											
Level	Number	Mean	Std Dev	Std Err N	/lean								
C-2006	16	0.37500	1.50000		3750								
C-2009	16	1.87500	4.25637		0641								
C-2003	16	5.56250	8.54766		1369								
X1-2006	10	3.00000	4.89898		5492								
X1-2000	10	0.20000	0.42164		1333								
X1-2009	10	0.00000	0.00000		0000								
X2-2006	10	1.00000	1.63299		5164								
X2-2000	10	3.80000	5.55378		7563								
X2-2009	10	0.00000	0.00000		0000								
		0.00000	0.00000	0.0									
Means Com	parisons)												
Dif=Mean[i]	-Mean[j]	C-Pre	X2-2009			-2009	X2-2		C-2006			1-Pre	X2-Pre
C-Pre		0.00000	1.76250			8750	4.56		5.18750			56250	5.56250
X2-2009		-1.76250	0.00000			2500	2.80	000	3.42500	3.60	0000 3.8	80000	3.80000
X1-2006		-2.56250	-0.80000			2500	2.00		2.62500			00000	3.00000
C-2009		-3.68750	-1.92500			0000	0.87		1.50000			87500	1.87500
X2-2006		-4.56250	-2.80000			87500	0.00		0.62500			00000	1.00000
C-2006		-5.18750	-3.42500	-2.625		50000	-0.62	500	0.00000	0.17	7500 0.3	37500	0.37500
X1-2009		-5.36250	-3.60000	-2.800	00 -1.6	67500	-0.80	· 000	0.17500	0.00	0000 0.2	20000	0.20000
X1-Pre		-5.56250	-3.80000	-3.000	00 -1.8	37500	-1.00	· 000	0.37500	-0.2	0000 0.0	00000	0.00000
X2-Pre		-5.56250	-3.80000	-3.000	00 -1.8	87500	-1.00	000 -	0.37500	-0.2	0000 0.0	00000	0.00000
Alpha= 0.	.05												
Comparison	s for each p	pair using St	tudent's t										
t t													
1.98423													
Abs(Dif)-LS	D C	-Pre X2-	2009 X	-2006	C-2009	X2-2	2006	C-20	06 X1	-2009	X1-Pre		-Pre
C-Pre	-3.08	3995 -1.7	6059 -0	96059	0.59755	1.03	8941	2.097	55 1.	83941	2.03941	2.03	941
X2-2009	-1.76	6059 -3.9	0852 -3	10852	-1.59809	-1.10)852	-0.098	09 -0.	30852	-0.10852	-0.10)852
X1-2006	-0.96	6059 -3.1	0852 -3	90852	-2.39809	-1.90)852	-0.898	09 -1.	10852	-0.90852	-0.90)852
C-2009	0.59	9755 -1.5	9809 -2	39809	-3.08995	-2.64	1809	-1.589	95 -1.	84809	-1.64809	-1.64	809
X2-2006	1.03	3941 -1.1	0852 -1	90852	-2.64809	-3.90)852	-2.898	09 -3.	10852	-2.90852	-2.90)852
C-2006	2.09	9755 -0.0	9809 -0	89809	-1.58995	-2.89	9809	-3.089	95 -3.	34809	-3.14809	-3.14	809
X1-2009	1.83			10852	-1.84809	-3.10)852	-3.348	09 -3.	90852	-3.70852	-3.70)852
X1-Pre	2.03	3941 -0.1	0852 -0	90852	-1.64809	-2.90)852	-3.148	09 -3.	70852	-3.90852	-3.90	852
X2-Pre	2.03	.0.1	0852 -0	90852	-1.64809	-2.90)852	-3.148	09 -3.	70852	-3.90852	-3.90)852
Positive valu Comparisons q*					/ different								
ч 3.17152													
Abs(Dif)-LS		-Pre X2-	2009 X [.]	-2006	C-2009	X2-2	2006	C-20	06 X1	-2009	X1-Pre	X2	-Pre
C-Pre	-4.93				-1.25136	-1.06		0.248		-2009 26867	-0.06867	-0.06	
X2-2009	-4.90				-3.70617	-3.44		-2.206		64722	-2.44722	-0.00	
X1-2005	-3.06				-4.50617	-4.24		-3.006		44722	-3.24722	-2.44	
C-2009	-3.00				-4.93886	-4.75		-3.438		95617	-3.75617	-3.75	
X2-2009	-1.20				-4.93660	-4.70		-5.006		44722	-5.24722	-5.24	
C-2006	0.24				-3.43886	-5.00		-4.938		45617	-5.25617	-5.25	
X1-2009	-0.26				-3.95617	-5.44		-5.456		24722	-6.04722		
X1-Pre	-0.06				-3.75617	-5.24		-5.256		04722	-6.24722	-6.24	
X2-Pre	-0.06				-3.75617	-5.24	+122	-5.256	i/ -6.	04722	-6.24722	-6.24	+1 22
Positive valu	ies show pa	airs of mear	is that are s	significantly	y ainterent								

Wilcoxon / Kru	uskal-Wal	lis Tests (Ran	k Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
C-2006	16	667.5	41.7188	-2.166
C-2009	16	1004	62.7500	1.396
C-Pre	16	1038.5	64.9063	1.762
X1-2006	10	697	69.7000	1.971
X1-2009	10	467	46.7000	-1.008
X1-Pre	10	380	38.0000	-2.140
X2-2006	10	584	58.4000	0.501
X2-2009	10	668	66.8000	1.594
X2-Pre	10	380	38.0000	-2.140
1-way Test,	Chi-Squa	re Approxima	tion	
ChiSquare	DF	Prob>ChiSo	9	
23.7513	8	0.002	5	

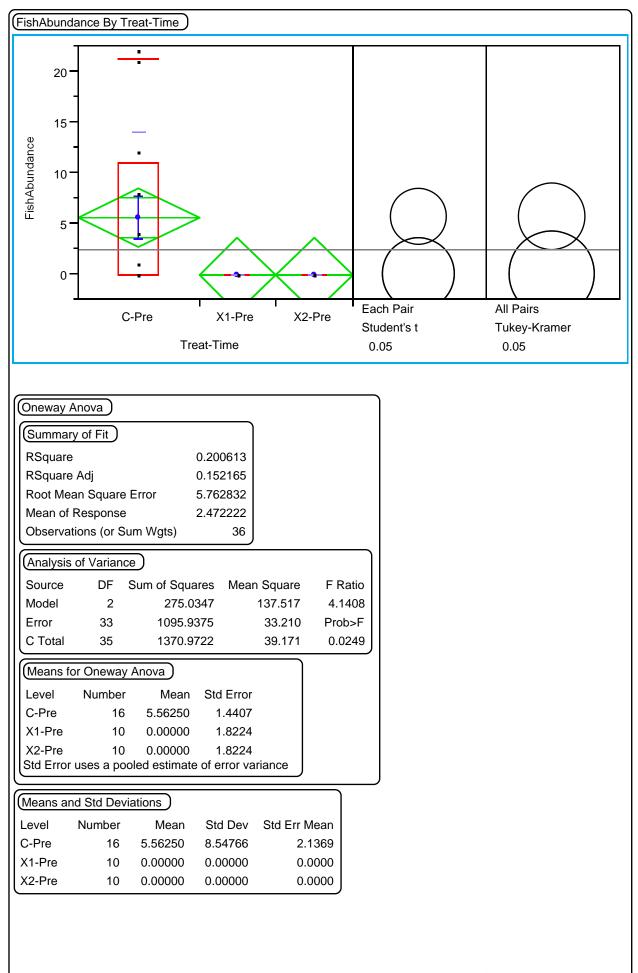
#Species By Treat-Time3
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C-Post C-Pre X-Post X-Pre Each Pair All Pairs
Treat-Time3 0.05 0.05
Oneway Anova Summary of Fit RSquare 0.407541 RSquare Adj 0.390451 Root Mean Square Error 0.979017 Mean of Response 1.583333 Observations (or Sum Wgts) 108 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 3 68.56875 22.8562 Error 104 99.68125 0.9585 Prob>F C Total 107 Means for Oneway Anova
Level Number Mean Std Error C-Post 32 2.03125 0.17307 C-Pre 16 2.43750 0.24475 X-Post 40 1.67500 0.15480 X-Pre 20 0.00000 0.21891 Std Error uses a pooled estimate of error variance Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean C-Post 32 2.03125 1.20441 0.21291 C-Pre 16 2.43750 0.72744 0.18186 X-Post 40 1.67500 1.09515 0.17316 X-Pre 20 0.00000 0.00000 0.00000
Nekton Monitoring

(Means Compari						N F
Dif=Mean[i]-Mea		-Pre	C-Post		Post	X-Pre
C-Pre			0.40625	-	5250	2.43750
C-Post	-0.40		0.00000		5625	2.03125
X-Post X-Pre	-0.76		0.35625		0000 7500	1.67500
-	-2.43	5750 -	2.03125	-1.0	7500	0.00000
Alpha= 0.05						
Comparisons for	each pair us	ing Stude	ent's t			
t 1.98305						
Abs(Dif)-LSD	C-Pre	C-Po	ct V	Post	V	⊃re
C-Pre						-
C-Pre C-Post	-0.68640 -0.18819	-0.1881 -0.4853		8821 0420	1.786 1.477	-
X-Post	0.18821	-0.4653		3412		
X-Post X-Pre	1.78632	1.4778		331	-0.613	
Positive values s		-				
Comparisons for					illy une	ient.
q*						
2.61106						
Abs(Dif)-LSD	C-Pre	C-Po	st X-	Post	X-I	Pre
C-Pre	-0.90378	-0.3764	15 0.00	634	1.580)10
C-Post	-0.37645	-0.6390	07 -0.25	5002	1.302	260
X-Post	0.00634	-0.2500)2 -0.57	7160	0.974	194
X-Pre	1.58010	1.3026	60 0.97	494	-0.808	336
Positive values s	how pairs of	means th	nat are sig	nificar	ntly diffe	rent.
Wilcoxon / Krus	kal-Wallis Te	sts (Ranl	(Sums)			
Level Co	ount Score	Sum S	core Mea	n (M	ean-Me	an0)/Std0
C-Post	32 20	76.5	64.8906	6		2.301
C-Pre	16	1215	75.937	5		3.051
X-Post	40 22	94.5	57.362	5		0.747
X-Pre	20	300	15.000)		-6.432
1-way Test, C	hi-Square Ap	proximat	ion			
ChiSquare	DF Pro	b>ChiSq	l			
45.8027	3	<.0001				

(#Species By Treat-Time3)
#Species By Treat-Time3
Oneway Anova Summary of Fit RSquare 0.065919 RSquare Adj 0.043941 Root Mean Square Error 1.082922 Mean of Response 1.943182 Observations (or Sum Wgts) 88
Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 7.03466 3.51733 2.9993 Error 85 99.68125 1.17272 Prob>F C Total 87 106.71591 1.22662 0.0551 Means for Oneway Anova
C-Pre 16 2.43750 0.27073 X-Post 40 1.67500 0.17123 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Err Mean C-Post 32 2.03125 1.20441 0.21291 C-Pre 16 2.43750 0.72744 0.18186 X-Post 40 1.67500 1.09515 0.17316
Nekton Monitoring

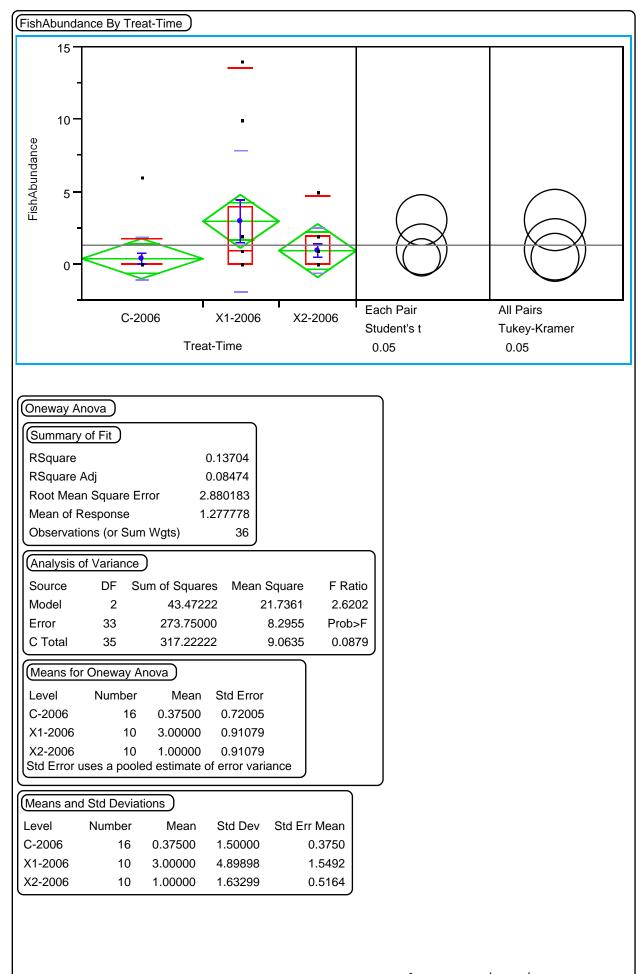

	_					
(Means Comparis	ions)					
Dif=Mean[i]-Mear	n[j] C	C-Pre	C-Post	X-Post		
C-Pre	0.00	0000 0.	406250	0.762500		
C-Post	-0.4	0625 0.	.000000	0.356250		
X-Post	-0.7	7625 -0	0.35625	0.000000		
Alpha= 0.05						
Comparisons for e	each pair us	sing Stude	ent's t			
t						
1.98828						
Abs(Dif)-LSD	C-Pre	C-Po	st X-P	ost		
C-Pre	-0.76125	-0.2530	0.125	590		
C-Post	-0.25301	-0.5382	9 -0.15	441		
X-Post	0.125590	-0.1544	1 -0.48	146		
Positive values sh Comparisons for a q* 2.38547	now pairs of all pairs usir	means th ng Tukey-	at are sign Kramer HS	ificantly diffe	erent.	
Abs(Dif)-LSD	C-Pre	C-Po	st X-P	ost		
C-Pre	-0.91333	-0.3847	1 -0.00	164		
C-Post	-0.38471	-0.6458	-0.25	643		
X-Post	-0.00164	-0.2564	3 -0.57	764		
Positive values sh	now pairs of	means th	nat are sign	ificantly diff	erent.	
Wilcoxon / Krusk	al-Wallis Te	ests (Rank	(Sums)			
Level Cou			core Mean	(Mean-M	,	
		466.5	45.8281		0.37	-
	16	895	55.9375		2.04	
X-Post	40 15	554.5	38.8625		-1.95	57
1-way Test, Ch	i-Square Ap	oproximat	ion			
ChiSquare	DF Pro	ob>ChiSq				
5.6474	2	0.0594	ļ			
<u> </u>						

FishAbundance By Treat-Time3
Pur united by free free free free free free free fre
Oneway Anova Summary of Fit RSquare 0.131527 RSquare Adj 0.106475 Root Mean Square Error 4.41091 Mean of Response 1.898148 Observations (or Sum Wgts) 108 Analysis of Variance 108 Source DF Sum of Squares Mean Square F Ratio Model 3 306.4421 102.147 5.2501 Error 104 2023.4375 19.456 Prob>F C Total 107 2329.8796 21.775 0.0021
Means for Oneway Anova Level Number Mean Std Error C-Post 32 1.12500 0.7797 C-Pre 16 5.56250 1.1027 X-Post 40 2.00000 0.6974 X-Pre 20 0.00000 0.9863 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-Post 32 1.12500 3.23040 0.5711 C-Pre 16 5.56250 8.54766 2.1369
X-Post 40 2.00000 3.93538 0.6222 X-Pre 20 0.00000 0.0000 0.0000 Nekton Monitoring


(Means Comparisons) Dif=Mean[i]-Mean[j] C-Pre X-Post C-Post X-Pre C-Pre 0.00000 3.56250 4.43750 5.56250 X-Post -3.56250 0.00000 0.87500 2.00000 C-Post -4.43750 -0.87500 0.00000 1.12500 X-Pre -5.56250 -2.00000 -1.12500 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t t
C-Pre 0.00000 3.56250 4.43750 5.56250 X-Post -3.56250 0.00000 0.87500 2.00000 C-Post -4.43750 -0.87500 0.00000 1.12500 X-Pre -5.56250 -2.00000 -1.12500 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t 5.56250
X-Post -3.56250 0.00000 0.87500 2.00000 C-Post -4.43750 -0.87500 0.00000 1.12500 X-Pre -5.56250 -2.00000 -1.12500 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t Image: Comparison of the student's t Image: Comparison of the student's t
C-Post -4.43750 -0.87500 0.00000 1.12500 X-Pre -5.56250 -2.00000 -1.12500 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t
X-Pre -5.56250 -2.00000 -1.12500 0.00000 Alpha= _{0.05} Comparisons for each pair using Student's t
Alpha= 0.05 Comparisons for each pair using Student's t
Comparisons for each pair using Student's t
1.98305
Abs(Dif)-LSD C-Pre X-Post C-Post X-Pre
C-Pre -3.09255 0.97509 1.75927 2.62865
X-Post 0.97509 -1.95590 -1.19955 -0.39548
C-Post 1.75927 -1.19955 -2.18676 -1.36829
X-Pre 2.62865 -0.39548 -1.36829 -2.76606
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.61106
Abs(Dif)-LSD C-Pre X-Post C-Post X-Pre
C-Pre -4.07193 0.15568 0.91110 1.69953
X-Post 0.15568 -2.57532 -1.85654 -1.15411
C-Post 0.91110 -1.85654 -2.87929 -2.15790
X-Pre 1.69953 -1.15411 -2.15790 -3.64205
Positive values show pairs of means that are significantly different.
Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
Level Count Score Sum Score Mean (Mean-Mean0)/Std0
C-Post 32 1671.5 52.2344 -0.595
C-Pre 16 1038.5 64.9063 1.762
X-Post 40 2416 60.4000 1.839
X-Pre 20 760 38.0000 -3.199
1-way Test, Chi-Square Approximation
ChiSquare DF Prob>ChiSq
13.4149 3 0.0038

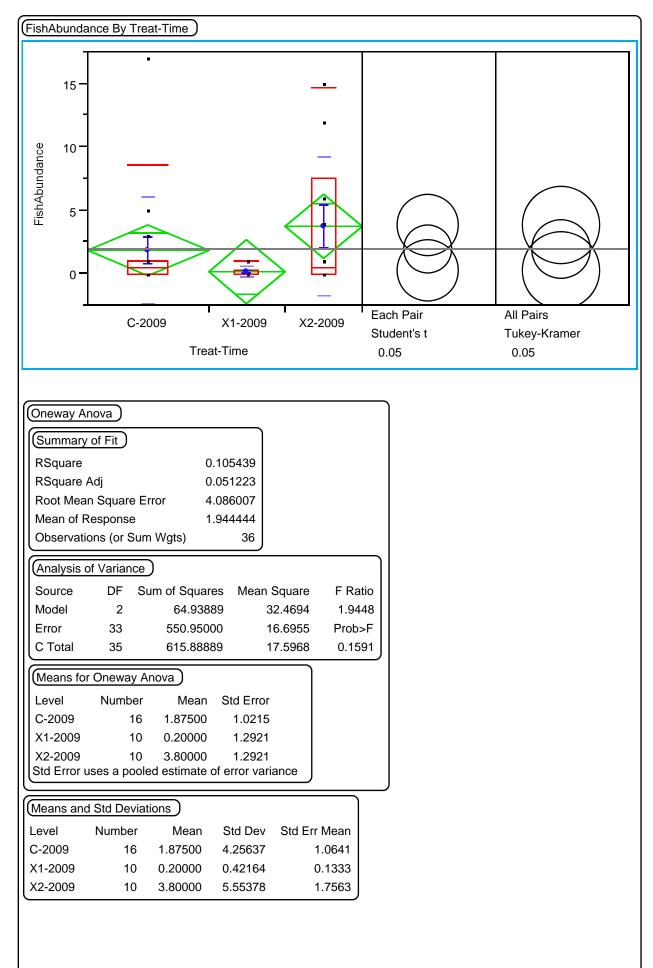
(FishAbundance By Treat-Time3)
LishAburgance
C-Post C-Pre X-Post Each Pair All Pairs Student's t Tukey-Kramer
Treat-Time3 0.05 0.05
Oneway Anova Summary of Fit RSquare 0.097261 RSquare Adj 0.07602 Root Mean Square Error 4.879052 Mean of Response 2.329545 Observations (or Sum Wgts) 88 Analysis of Variance Source DF Source DF Source DF Sum of Squares Mean Square Fror 85 2023.4375 23.805 Prob>F C Total 87 2241.4432 25.764 0.0129 Means for Oneway Anova Level Number Level Number Mean Std Error C-Post 32 1.12500 0.8625 C-Pre 16 Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean C-Post 32 1.12500 3.23040 0.5711
C-Pre 16 5.56250 8.54766 2.1369
X-Post 40 2.00000 3.93538 0.6222
Nekton Monitoring

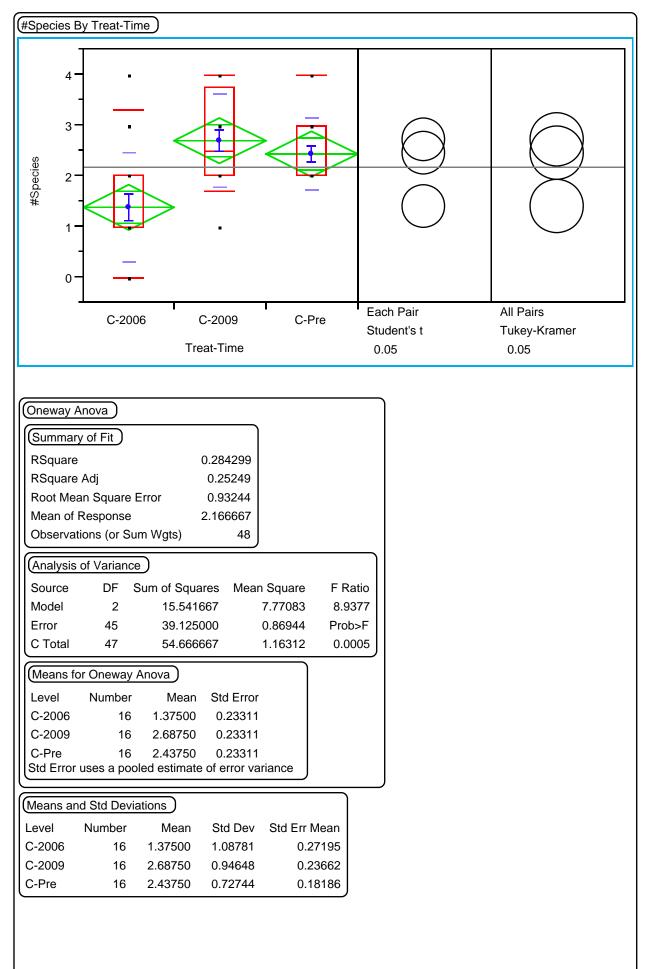
(Means Compar	risons)						
Dif=Mean[i]-Me	an[j]	C-Pre	X-	Post	C-Post		
C-Pre		0.00000	3.56	6250	4.43750		
X-Post	-	3.56250	0.00	0000	0.87500		
C-Post		4.43750	-0.87	7500	0.00000		
Alpha= 0.05							
Comparisons fo	r each pa	ir using St	udent's	s t			
t							
1.98828							
Abs(Dif)-LSD	C-P	re X-	Post	C-P	ost		
C-Pre	-3.429	79 0.69	9293	1.467	22		
X-Post	0.6929	93 -2.16	6919	-1.425	577		
C-Post	1.4672	22 -1.42	2577	-2.425	23		
Positive values	show pair	s of mean	s that	are signi	ficantly dif	ferent.	
Comparisons fo q*	r all pairs	using Tuk	ey-Kra	imer HS	D		
ч 2.38547							
Abs(Dif)-LSD	C-P	rο Χ.	Post	C-P	oet		
C-Pre	-4.114		1969	0.873			
X-Post	0.119)252				
C-Post	0.873		3539	-2.909			
Positive values						ferent	
			5 that i				
(Wilcoxon / Krus	skal-Walli	s Tests (R	ank Sı	ums)			
		core Sum		e Mean	(Mean-N	lean0)/St	
C-Post	32	1261.5	-	9.4219		-1.6	
C-Pre	16	808.5	-	0.5313		1.1	
X-Post	40	1846	4	6.1500		0.6	32
1-way Test, C	hi-Squar	e Approxin	nation				
ChiSquare	DF	Prob>Ch	iSq				
3.0839	2	0.2	140				


-							
Means Comp	parisons						
Dif=Mean[i]-N	/lean[j] C	-Pre	X1-	Pre	X2-Pre		
C-Pre	0.00	000	2.43	750	2.43750		
X1-Pre	-2.43	8750	0.00	000	0.00000		
X2-Pre	-2.43	8750	0.000	000	0.00000		
Alpha= 0.0	5						
Comparisons	for each pair us	ing Stu	dent's	t			
t							
2.03450							
Abs(Dif)-LSD	C-Pre	X1-	Pre	X2-P	re		
C-Pre	-0.35278	2.03	-	2.035			
X1-Pre	2.03527		623				
X2-Pre	2.03527	-0.44		-0.446	-		
Positive value	s show pairs of for all pairs usir	means	that a	re signi nor HSI	ficantly diffe ר	erent.	
q*		ig runc	y mai				
2.45379							
Abs(Dif)-LSD	C-Pre	X1-	Pre	X2-P	re		
C-Pre	-0.42548	1.95	238	1.952	38		
X1-Pre	1.95238	-0.53	819	-0.538	19		
X2-Pre	1.95238	-0.53	819	-0.538	19		
Positive value	s show pairs of	means	that a	re signi	ficantly diffe	erent.	
Wilcovon / Kr	uskal-Wallis Te	ete (Po	nk Sur				
	uskai-wallis Te	515 (Na		115)			
Level	Count Score	Sum	Score	Mean	(Mean-M	ean0)/S	td0
C-Pre	16	456	28	3.5000		5.6	678
X1-Pre	10	105	1(0.5000		-3.1	139
X2-Pre	10	105	1(0.5000		-3.1	139
1-way Test,	, Chi-Square Ap	proxim	ation				
ChiSquare	DF Pro	b>Chi	Sq				
32.4377		<.00	•				

$\begin{array}{cccccccc} \text{Dif=Mean[i]-Mean[j]} & \text{C-Pre} & \text{X1-Pre} & \text{X2-Pre} \\ \text{C-Pre} & 0.00000 & 5.56250 & 5.56250 \\ \text{X1-Pre} & -5.56250 & 0.00000 & 0.00000 \\ \text{X2-Pre} & -5.56250 & 0.00000 & 0.00000 \\ \text{Alpha=} & 0.05 \\ \text{Comparisons for each pair using Student's t} \\ t \\ 2.03450 \\ \text{Abs(Dif)-LSD} & \text{C-Pre} & \text{X1-Pre} & \text{X2-Pre} \\ \text{C-Pre} & -4.14523 & 0.83621 & 0.83621 \\ \text{X1-Pre} & 0.83621 & -5.24335 & -5.24335 \\ \text{X2-Pre} & 0.83621 & -5.24335 & -5.24335 \\ \end{array}$	
X1-Pre -5.56250 0.00000 0.00000 X2-Pre -5.56250 0.00000 0.00000 Alpha= 0.05 0.05 0.0000 0.00000 Comparisons for each pair using Student's t t 1 1 2.03450 C-Pre X1-Pre X2-Pre Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
X2-Pre -5.56250 0.00000 0.00000 Alpha= 0.05 0.05 0.03450 Comparisons for each pair using Student's t t 1 2.03450 2.03450 0.06000 Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
Alpha= 0.05 Comparisons for each pair using Student's t t 2.03450 Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
Comparisons for each pair using Student's t t 2.03450 Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621	
t 2.03450 Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
2.03450 Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
Abs(Dif)-LSD C-Pre X1-Pre X2-Pre C-Pre -4.14523 0.83621 0.83621 X1-Pre 0.83621 -5.24335 -5.24335	
C-Pre-4.145230.836210.83621X1-Pre0.83621-5.24335-5.24335	
X1-Pre 0.83621 -5.24335 -5.24335	
X2-Pro 0.83621 -5.24335 -5.24335	
AZ=115 0.00021 =0.24000 =0.24000	
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.45379	
Abs(Dif)-LSD C-Pre X1-Pre X2-Pre	
C-Pre -4.99953 -0.13784 -0.13784	
X1-Pre -0.13784 -6.32396 -6.32396	
X2-Pre -0.13784 -6.32396 -6.32396	
Positive values show pairs of means that are significantly different.	J
Wilcoxon / Kruskal-Wallis Tests (Rank Sums)	
Level Count Score Sum Score Mean (Mean-Mean0)/S	Std0
	202
X1-Pre 10 150 15.0000 -1.7	764
X2-Pre 10 150 15.0000 -1.7	764
1-way Test, Chi-Square Approximation	
ChiSquare DF Prob>ChiSq	
10.4037 2 0.0055	

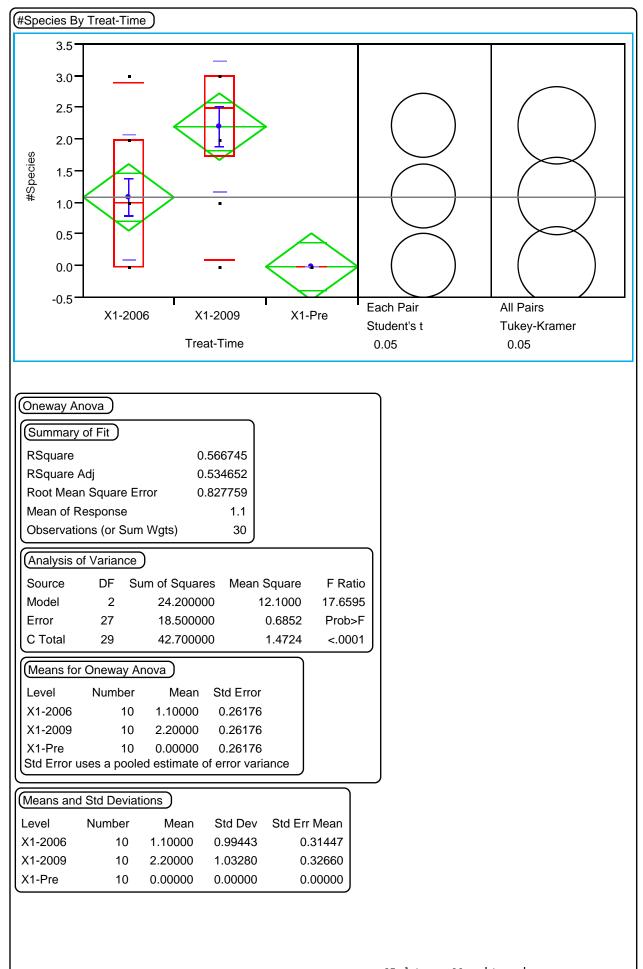
#Species By Treat-Time
C-2006 X1-2006 X2-2006 Student's t Tukey-Kramer
Treat-Time 0.05 0.05
Summary of Fit RSquare 0.016524 RSquare Adj -0.04308 Root Mean Square Error 1.030593 Mean of Response 1.305556 Observations (or Sum Wgts) 36 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 0.588889 0.29444
Error 33 35.050000 1.06212 Prob>F C Total 35 35.638889 1.01825 0.7596
(Means for Oneway Anova)
Level Number Mean Std Error C-2006 16 1.37500 0.25765 X1-2006 10 1.10000 0.32590 X2-2006 10 1.40000 0.32590 Std Error uses a pooled estimate of error variance Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean C-2006 16 1.37500 1.08781 0.27195


Maana Compar	icono				
(Means Compar			0 0000		
Dif=Mean[i]-Me		2006	C-2006	X1-2006	
X2-2006			.025000	0.300000	
C-2006	-(.000000	0.275000	
X1-2006		-0.3	-0.275	0.000000	
Alpha= 0.05					
Comparisons for	r each pair u	sing Stude	ent's t		
t					
2.03450					
Abs(Dif)-LSD	X2-2006	C-200	•	2006	
X2-2006	-0.93769	-0.8202		3769	
C-2006	-0.82022	-0.7413		7022	
X1-2006	-0.63769	-0.5702		3769	
Positive values s Comparisons for				nificantly differer	nt.
q*	all pairs usi	ng rukey-		30	
ч 2.45379					
Abs(Dif)-LSD	X2-2006	C-200)6 X1-	2006	
X2-2006	-1.13094	-0.9944	-	3094	
C-2006	-0.99442	-0.8940		4442	
X1-2006	-0.83094	-0.7444		3094	
				nificantly differer	ot l
		means ti			
Wilcoxon / Krus	kal-Wallis Te	ests (Rank	(Sums)		
			Score Me	(,
C-2006	16	302	18.87		0.184
X1-2006	10	164.5	16.45		-0.741
X2-2006	10	199.5	19.95	00	0.519
1-way Test, C	hi-Square A	pproximat	ion		
ChiSquare	DF Pr	ob>ChiSq			
0.6473	2	0.7235	5		
)


					`
Means Comparis	sons				
Dif=Mean[i]-Mea	in[j] X1-2	2006 X	2-2006	C-2006	
X1-2006	0.00	0000 2	.00000 2	2.62500	
X2-2006	-2.0	0000 0.	.00000	0.62500	
C-2006	-2.62	2500 -0	.62500 (0.00000	
Alpha= 0.05					
Comparisons for	each pair us	ing Studer	nt's t		
t					
2.03450					
Abs(Dif)-LSD	X1-2006	X2-2006			
X1-2006	-2.62055	-0.62055		-	
X2-2006	-0.62055	-2.62055			
C-2006	0.26286	-1.73714		-	
Positive values sl Comparisons for	how pairs of all pairs usin	means that	at are signifi	cantly different.	
q*		ig runcy-r			
2.45379					
Abs(Dif)-LSD	X1-2006	X2-2006	6 C-200	06	
X1-2006	-3.16063	-1.16063	-0.2239	5	
X2-2006	-1.16063	-3.16063	-2.2239	5	
C-2006	-0.22395	-2.22395	5 -2.4987	0	
Positive values sl	how pairs of	means that	at are signifi	cantly different.	
		ata (Darah			,
(Wilcoxon / Krusk	ai-wailis 16	sis (Rank	Sums)		
Level C	Count Sco	e Sum	Score Mean	(Mean-Mean0)	/Std0
C-2006	16	229	14.3125	· · · · ·	2.599
X1-2006	10	238	23.8000	2	2.276
X2-2006	10	199	19.9000	(0.585
1-way Test, Ch	ni-Square Ap	proximatio	on		
ChiSquare	DF Pro	b>ChiSq			
7.8887	2	0.0194			

#Species By Treat-Time
good geod geod geod geod geod geod geod
Treat-Time 0.05 0.05
Oneway Anova Summary of Fit RSquare 0.085315 RSquare Adj 0.02988 Root Mean Square Error 1.030409 Mean of Response 2.361111 Observations (or Sum Wgts) 36 Analysis of Variance Source DF Source DF Sum of Squares Mean Square Fror 33 35.037500 1.06174 Prob>F C Total 35 38.305556 1.09444
Means for Oneway Anova Level Number Mean Std Error C-2009 16 2.68750 0.25760 X1-2009 10 2.20000 0.32584 X2-2009 10 2.00000 0.32584 Std Error uses a pooled estimate of error variance Std Error uses a pooled estimate of error variance
Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-2009 16 2.68750 0.94648 0.23662 X1-2009 10 2.20000 1.03280 0.32660 X2-2009 10 2.00000 1.15470 0.36515

						<u> </u>	
Means Compa	arisons						
Dif=Mean[i]-M	lean[j]	C-2009	X1-20	09 X	2-2009		
C-2009		0.000000	0.4875	00 0.6	687500		
X1-2009		-0.4875	0.0000	00 0.2	200000		
X2-2009		-0.6875	-0	0.2 0.0	00000		
Alpha= 0.0	5						
Comparisons f	or each pa	air using Stu	ident's t				
t							
2.03450							
Abs(Dif)-LSD	C-20	009 X1-2	009	X2-2009)		
C-2009	-0.741	18 -0.35	757	-0.15757	7		
X1-2009	-0.357		-	-0.73752	2		
X2-2009	-0.157	757 -0.73	752	-0.93752	2		
Positive values					antly different.		
Comparisons f q*	or all pairs	s using Tuke	ey-Kram	er HSD			
ч 2.45379							
Abs(Dif)-LSD	C-20	09 X1-2	009	X2-2009	9		
C-2009	-0.893			-0.33174			
X1-2009	-0.531			-0.93074			
X2-2009	-0.331	-		-1.13074			
Positive values	s show pai	rs of means	that are	e signific	antly different		
	onon pa					<u> </u>	
(Wilcoxon / Kru	uskal-Wall	is Tests (Ra	ink Sum	is)			
	o 1	~ ~	•				
Level	Count	Score Sum		e Mean	(Mean-Mean	<i>′</i>	
C-2009	16 10	341 175 5		1.3125		1.473	
X1-2009	10 10	175.5	-	7.5500		-0.330 -1.285	
X2-2009	10	149.5	1	4.9500		-1.200	
1-way Test,	Chi-Squa	re Approxim	ation				
ChiSquare	DF	Prob>Chi	Sq				
2.5477	2	0.27	98				
)	


Means Comparis	sons				
Dif=Mean[i]-Mea	in[j] X2-2	2009 0	C-2009	X1-2009	
X2-2009	0.0	0000 1.	.92500	3.60000	
C-2009	-1.9	2500 0.	.00000	1.67500	
X1-2009	-3.6	0000 -1	.67500	0.00000	
Alpha= 0.05					
Comparisons for	each pair us	sing Studer	nt's t		
t					
2.03450					
Abs(Dif)-LSD	X2-2009	C-2009) X1-20	09	
X2-2009	-3.71768	-1.42607	-0.117	68	
C-2009	-1.42607	-2.93909		•	
X1-2009	-0.11768	-1.67607	-3.717	68	
Positive values sl					
Comparisons for	all pairs usir	пд тикеу-к	Tramer HS	D	
q* 2.45379					
	X2-2009	C-2009) X1-20	09	
X2-2009	-4.48386	-2.11670	-		
C-2009	-2.11670	-3.54480			
X1-2009	-0.88386	-2.36670			
Positive values sl					
				licanity different.	
Wilcoxon / Krusk	al-Wallis Te	ests (Rank	Sums)		
			Score Mea	1	
C-2009	16	313.5	19.5938		0.609
X1-2009	10	139	13.9000		.807
X2-2009	10	213.5	21.3500	ט 1	.112
1-way Test, Ch	ni-Square Ap	oproximatio	on		
ChiSquare	DF Pro	ob>ChiSq			
3.5531	2	0.1692			

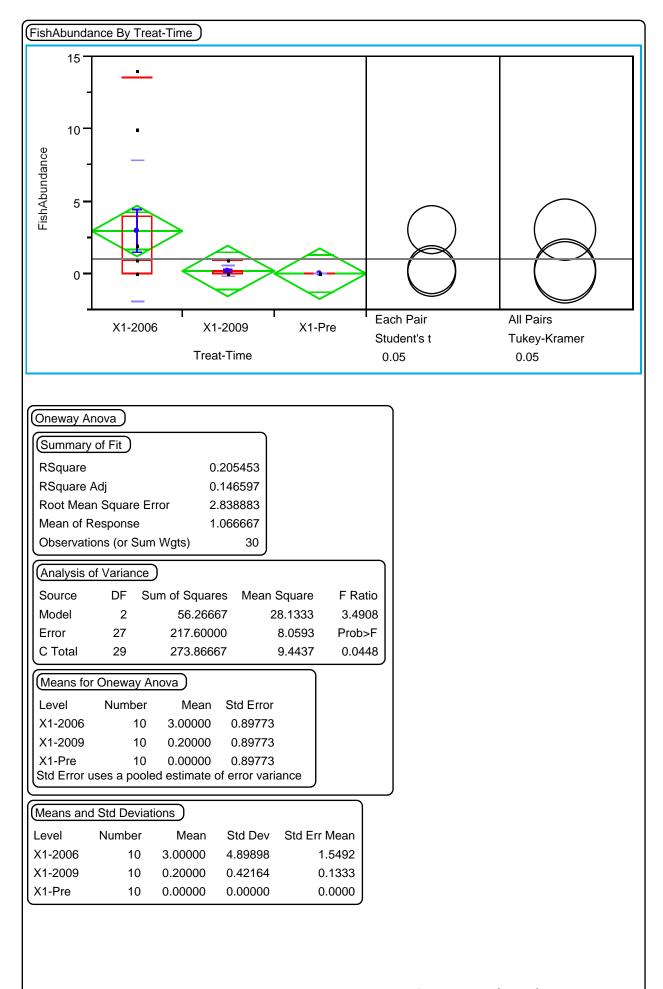
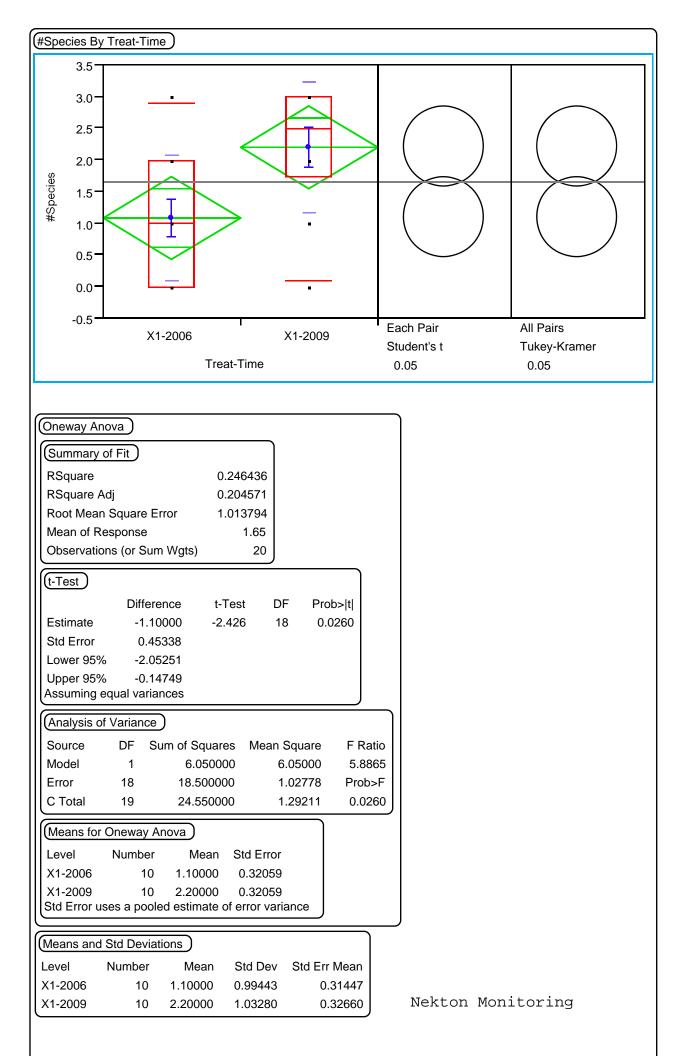
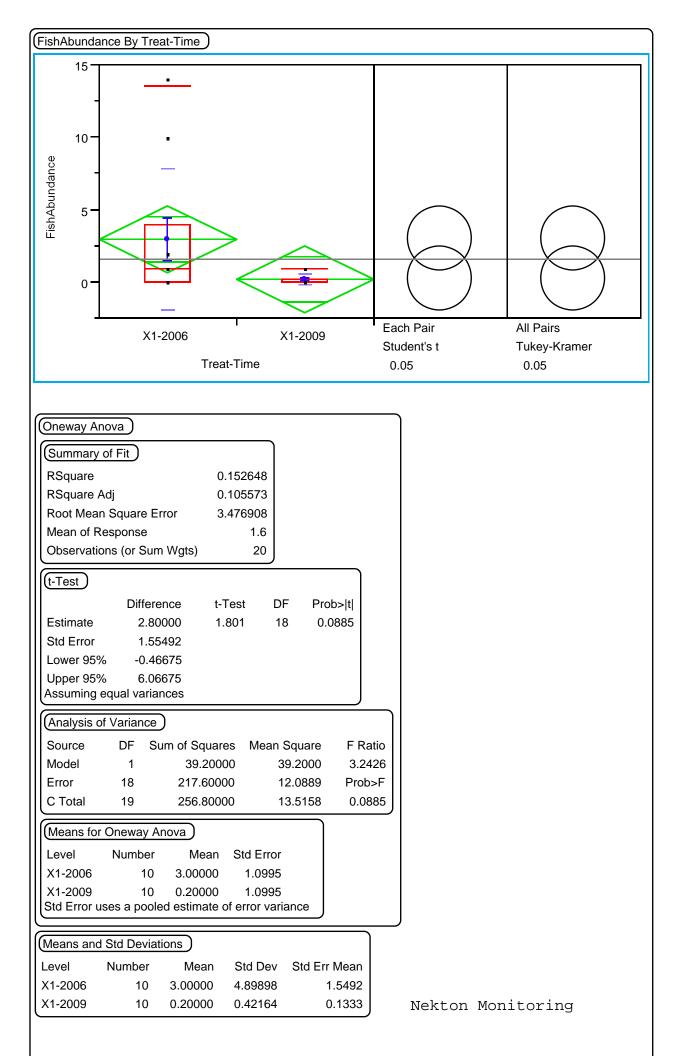
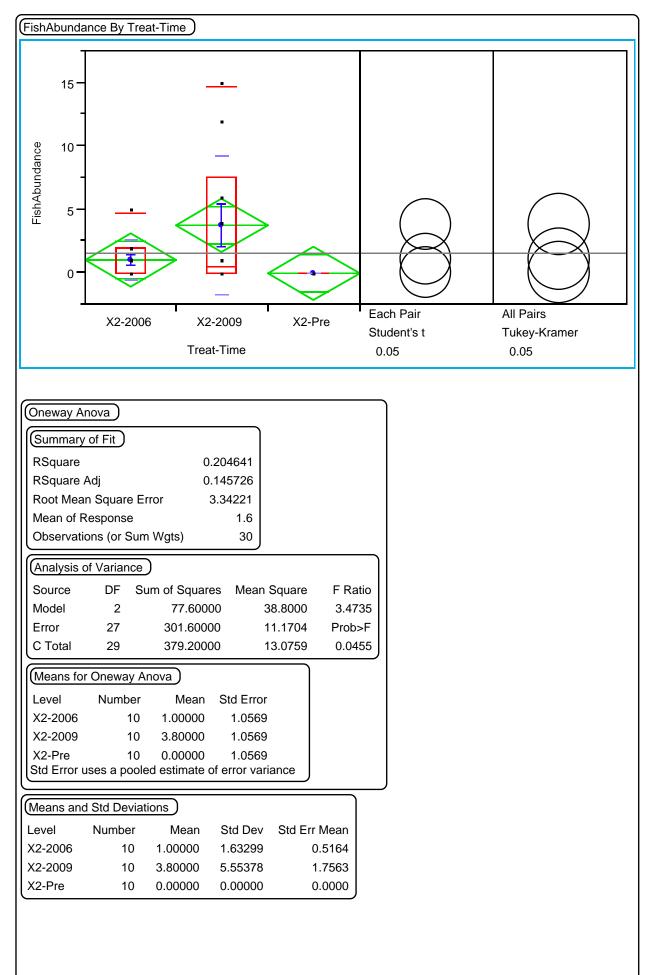

						_
Means Compar	risons					
Dif=Mean[i]-Me	an[j] C-	2009	C-I	Pre	C-2006	
C-2009	0.0	0000	0.250	000	1.31250	
C-Pre	-0.2	5000	0.000	000	1.06250	
C-2006	-1.3	1250	-1.062	250	0.00000	
Alpha= 0.05						
Comparisons fo	r each pair us	sing Stu	dent's	t		
t						
2.01410						
Abs(Dif)-LSD	C-2009		Pre	C-200		
C-2009	-0.66398	-0.41		0.6485 ⁻	-	
C-Pre	-0.41398	-0.66		0.3985	-	
C-2006	0.648518	0.398		-0.6639		
Positive values Comparisons fo						nt.
q*	r all pails usi	ig Tuke	y-itian		,	
2.42362						
Abs(Dif)-LSD	C-2009	C-	Pre	C-200	06	
C-2009	-0.79899	-0.54	899	0.5135 [,]	13	
C-Pre	-0.54899	-0.79	899	0.2635 [,]	13	
C-2006	0.513513	0.263	513	-0.7989	99	
Positive values	show pairs of	means	that ar	re signif	icantly differer	nt.
	L L X / III: T	(/D	1.0			
(Wilcoxon / Krus	skal-vvallis Te	ests (Ra	nk Sun	ns)		
Level C	Count Score	Sum	Score	Mean	(Mean-Mear	n0)/Std0
C-2006	16	231		1.4375	(-3.718
C-2009	16	495		0.9375		2.374
C-Pre	16	450	28	3.1250		1.332
1-way Test, C	Chi-Square Ap	proxim	ation			
ChiSquare	DF Pro	ob>Chi	Sq			
14.2695	2	0.00	•			

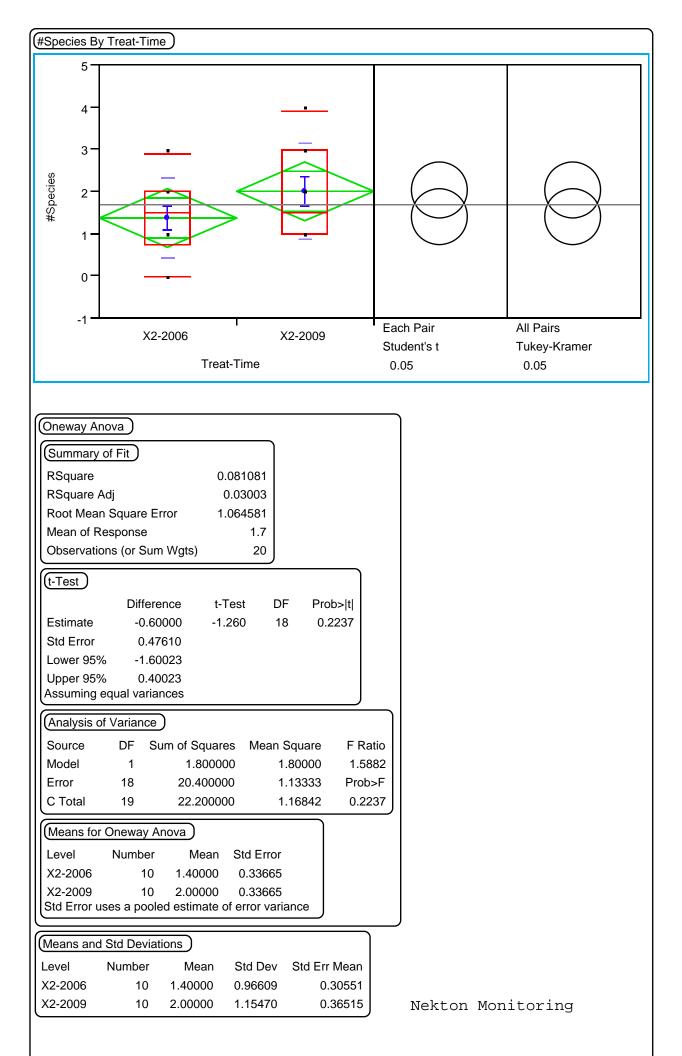
Image: Second State Sta	FishAbundance By Treat-Time
Summary of Fit RSquare 0.139948 RSquare Adj 0.101723 Root Mean Square Error 5.580596 Mean of Response 2.604167 Observations (or Sum Wgts) 48 Analysis of Variance Source Source DF Sum of Squares Model 2 228.0417 2 228.0417 114.021 Servations 45 1401.4375 Surce DF Sum of Squares Meal 147 1629.4792 34.670 0.0336 Means for Oneway Anova Itevel Level Number Mean C-2006 16 0.37500 C-2009 16 1.87500 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Level Number Mean Std Dev Std Err Mean C-2006 16 0.37500 C-2006 16 0.37500 0.37500	20 10 10 10 10 10 10 10 10 10 1
Source DF Sum of Squares Mean Square F Ratio Model 2 228.0417 114.021 3.6612 Error 45 1401.4375 31.143 Prob>F C Total 47 1629.4792 34.670 0.0336 Means for Oneway Anova Level Number Mean Std Error C-2006 16 0.37500 1.3951 C-2009 16 1.87500 1.3951 C-Pre 16 5.56250 1.3951 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-2006 16 0.37500 1.50000 0.3750 C-2006 16 0.37500 1.50000	Summary of Fit RSquare 0.139948 RSquare Adj 0.101723 Root Mean Square Error 5.580596 Mean of Response 2.604167 Observations (or Sum Wgts) 48
C-Pre 16 5.56250 1.3951 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Err Mean C-2006 16 0.37500 1.50000 0.3750 C-2009 16 1.87500 4.25637 1.0641	Source DF Sum of Squares Mean Square F Ratio Model 2 228.0417 114.021 3.6612 Error 45 1401.4375 31.143 Prob>F C Total 47 1629.4792 34.670 0.0336 Means for Oneway Anova Level Number Mean Std Error C-2006 16 0.37500 1.3951 0.0000
C-Pre 16 5.56250 8.54766 2.1369	C-Pre 16 5.56250 1.3951 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Err Mean C-2006 16 0.37500 1.50000 0.3750 C-2009 16 1.87500 4.25637 1.0641


Means Comparis	ons)				
Dif=Mean[i]-Mear	n[j] (C-Pre	C-2009	C-2006	
C-Pre	0.0	0000	3.68750	5.18750	
C-2009	-3.6	8750	0.00000	1.50000	
C-2006	-5.1	8750 -	1.50000	0.00000	
Alpha= 0.05					
Comparisons for e	each pair u	sing Stude	ent's t		
t					
2.01410					
Abs(Dif)-LSD	C-Pre	C-200	09 C-20	006	
C-Pre	-3.97389	-0.2863	39 1.213	361	
C-2009	-0.28639	-3.9738		389	
C-2006	1.21361	-2.4738	39 -3.973	389	
Positive values sh	ow pairs of	means th	hat are sign	ificantly differe	ent.
Comparisons for a q*	all pairs usi	ng Tukey-	-Kramer HS	D	
ч 2.42362					
Abs(Dif)-LSD	C-Pre	C-200)9 C-2(006	
C-Pre	-4.78189	-1.0943			
C-2009	-1.09439	-4.7818		-	
C-2006	0.40561	-3.2818			
Positive values sh	ow pairs of	f means th	nat are sign	ificantly differe	ent
	-				
(Wilcoxon / Kruska	al-Wallis Te	ests (Ranl	k Sums)		
		0		() ()	
Level Co			Score Mean	(,
C-2006	-	289.5	18.0938		-2.663
C-2009		434.5	27.1563		1.096
C-Pre	16	452	28.2500	1	1.553
1-way Test, Ch	i-Square A	oproximat	ion		
ChiSquare	DF Pr	ob>ChiSc	1		
7.2290	2	0.0269	9		

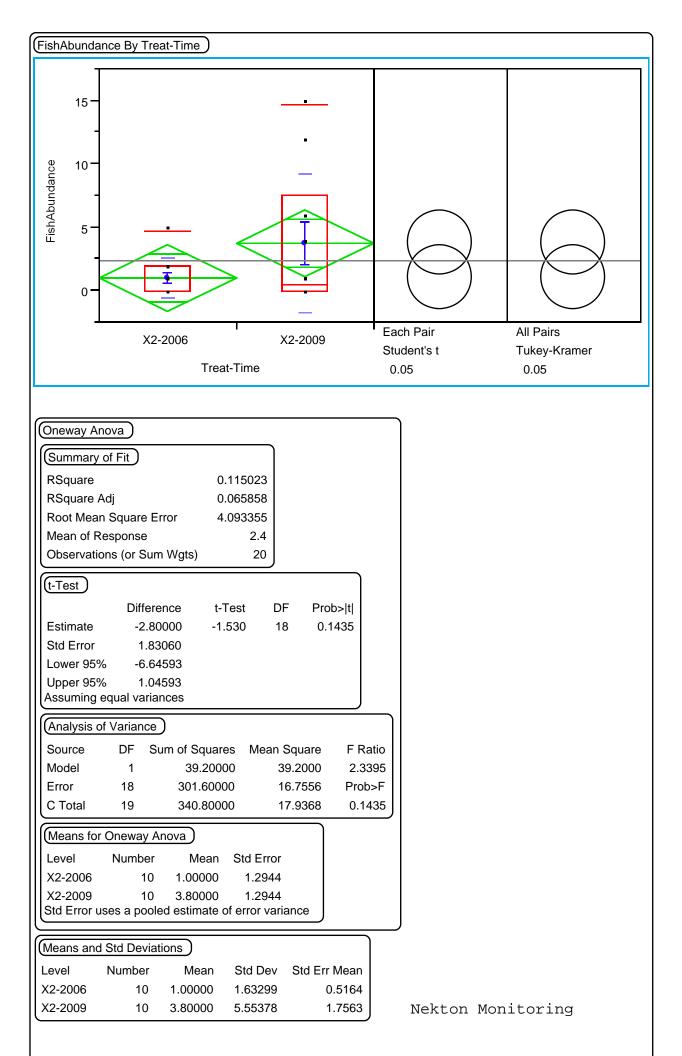

						ר	
(Means Compa							
Dif=Mean[i]-M		X1-2009	X1-200		K1-Pre		
X1-2009		0.00000	1.1000	-	20000		
X1-2006		1.10000	0.0000		10000		
X1-Pre		2.20000	-1.1000	0 0.	00000		
Alpha= 0.05	•						
Comparisons for	or each pa	ir using Stu	dent's t				
t							
2.05181							
Abs(Dif)-LSD	X1-20			X1-Pre			
X1-2009	-0.759			1.44045			
X1-2006	0.340			0.34045			
X1-Pre	1.440			0.75955			
Positive values Comparisons for	show pair	s of means	that are	signific	antly different.		
q*	or all pairs	using Tuke	y-maine	1130			
۹ 2.47942							
Abs(Dif)-LSD	X1-20	09 X1-20	006	X1-Pre			
X1-2009	-0.917			1.28216			
X1-2006	0.182			0.18216	i		
X1-Pre	1.282	16 0.18	216 -(0.91784	Ļ		
Positive values	show pair	s of means	that are	signific	antly different.		
	•						
Wilcoxon / Kru	iskal-Walli	s Tests (Ra	nk Sums	s))			
1	0	0	0		(NA		
Level		Score Sum	Score		(Mean-MeanC	,	
X1-2006	10	162	-	6.2000		0.304	
X1-2009	10	228		2.8000		3.396	
X1-Pre	10	75	7	.5000		-3.724	
1-way Test,	Chi-Squar	e Approxim	ation				
ChiSquare	DF	Prob>Chi	Sq				
17.2289	2	0.00	02				
)	

						`
(Means Compa	risons					
Dif=Mean[i]-Me	ean[j] X1	-2006	X1-2009	Х	1-Pre	
X1-2006	0.	00000	2.80000	3.0	00000	
X1-2009	-2.	80000	0.00000	0.2	20000	
X1-Pre	-3.	00000	-0.20000	0.0	00000	
Alpha= 0.05						
Comparisons fo	or each pair	using Stud	dent's t			
t						
2.05181						
Abs(Dif)-LSD	X1-2006	X1-20	09 X	1-Pre		
X1-2006	-2.60496	0.195	04 0.3	39504		
X1-2009	0.19504	-2.604	96 -2.4	40496		
X1-Pre	0.39504	-2.404	96 -2.0	60496		
Positive values					ntly different.	
Comparisons for q*	or all pairs us	sing Tukey	/-Kramer	HSD		
ч 2.47942						
Abs(Dif)-LSD	X1-2006	X1-20	na x	1-Pre		
X1-2006	-3.14784	-		14784		
X1-2009	-0.34784			94784		
X1-Pre	-0.14784	••••		14784		
Positive values		-		-	ntly different	
	Show pairs	ormeans		igninca	intry different.	<u> </u>
Wilcoxon / Kru	skal-Wallis	Tests (Rar	nk Sums))		
		_				
Level		ore Sum	Score N		(Mean-Mean0)	
X1-2006	10	209	20.9			3.030
X1-2009	10	141	14.1			0.764
X1-Pre	10	115	11.5	000	-2	2.237
1-way Test, 0	Chi-Square	Approxima	ation			
ChiSquare	DF F	vrob>ChiS	q			
10.0736	2	0.006	5			
<u> </u>						


(Means Comparisons)
Dif=Mean[i]-Mean[j] X1-2009 X1-2006
X1-2009 0.00000 1.10000
X1-2006 -1.10000 0.00000
Alpha= 0.05
Comparisons for each pair using Student's t
t
2.10091
Abs(Dif)-LSD X1-2009 X1-2006
X1-2009 -0.95251 0.147485
X1-2006 0.147485 -0.95251
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD
q*
2.10092
Abs(Dif)-LSD X1-2009 X1-2006
X1-2009 -0.95252 0.147479
X1-2006 0.147479 -0.95252
Positive values show pairs of means that are significantly different.
(Wilcoxon / Kruskal-Wallis Tests (Rank Sums))
Level Count Score Sum Score Mean (Mean-Mean0)/Std0
X1-2006 10 77 7.7000 -2.149
X1-2009 10 133 13.3000 2.149
2-Sample Test, Normal Approximation
S Z Prob> Z
133 2.14860 0.0317
1-way Test, Chi-Square Approximation
ChiSquare DF Prob>ChiSq
4.7859 1 0.0287


					Ň
(Means Compa	risons)				
Dif=Mean[i]-Me	ean[j] X	X1-2006	X1-2009		
X1-2006		0.00000	2.80000		
X1-2009	-	2.80000	0.00000		
Alpha= 0.05					
Comparisons for	or each pai	r using Stud	dent's t		
t					
2.10091					
Abs(Dif)-LSD	X1-200				
X1-2006	-3.2667		-		
X1-2009	-0.4667	-	-		
Positive values Comparisons for	show pairs	s of means t using Tukey	that are signific /-Kramer HSD	antly different.	
q*					
2.10092					
Abs(Dif)-LSD	X1-200)6 X1-20	09		
X1-2006	-3.2667	77 -0.466	577		
X1-2009	-0.4667	-3.266	577		
Positive values	show pairs	s of means	that are signific	antly different.	
Wilcoxon / Kru	ckal Malli	Tosto (Por			
	orai-vvaille	5 15315 (1781			
Level	Count S	Score Sum	Score Mean	(Mean-Mean0)/	/Std0
X1-2006	10	129	12.9000	2	2.016
X1-2009	10	81	8.1000	-2	2.016
2-Sample Te	st, Normal	Approxima	tion		
s	7	Prob> Z			
81	-2.01569				
1-way Test, 0					
	•	••			
ChiSquare	DF	Prob>ChiS	•		
4.2378	1	0.039			

#Species By Treat-Time
5
4
X2-2006 X2-2009 X2-Pre Each Pair All Pairs
Student's t Tukey-Kramer
Treat-Time 0.05 0.05
Oneway Anova
(Summary of Fit)
RSquare 0.508039 RSquare Adj 0.471597
Root Mean Square Error 0.869227
Mean of Response 1.133333
Observations (or Sum Wgts) 30
(Analysis of Variance)
Source DF Sum of Squares Mean Square F Ratio
Model 2 21.066667 10.5333 13.9412
Error 27 20.400000 0.7556 Prob>F
C Total 29 41.466667 1.4299 <.0001
Means for Oneway Anova
Level Number Mean Std Error
X2-2006 10 1.40000 0.27487
X2-2009 10 2.00000 0.27487
X2-Pre 10 0.00000 0.27487
Std Error uses a pooled estimate of error variance
Means and Std Deviations
Level Number Mean Std Dev Std Err Mean
X2-2006 10 1.40000 0.96609 0.30551
X2-2009 10 2.00000 1.15470 0.36515
X2-Pre 10 0.00000 0.00000 0.00000

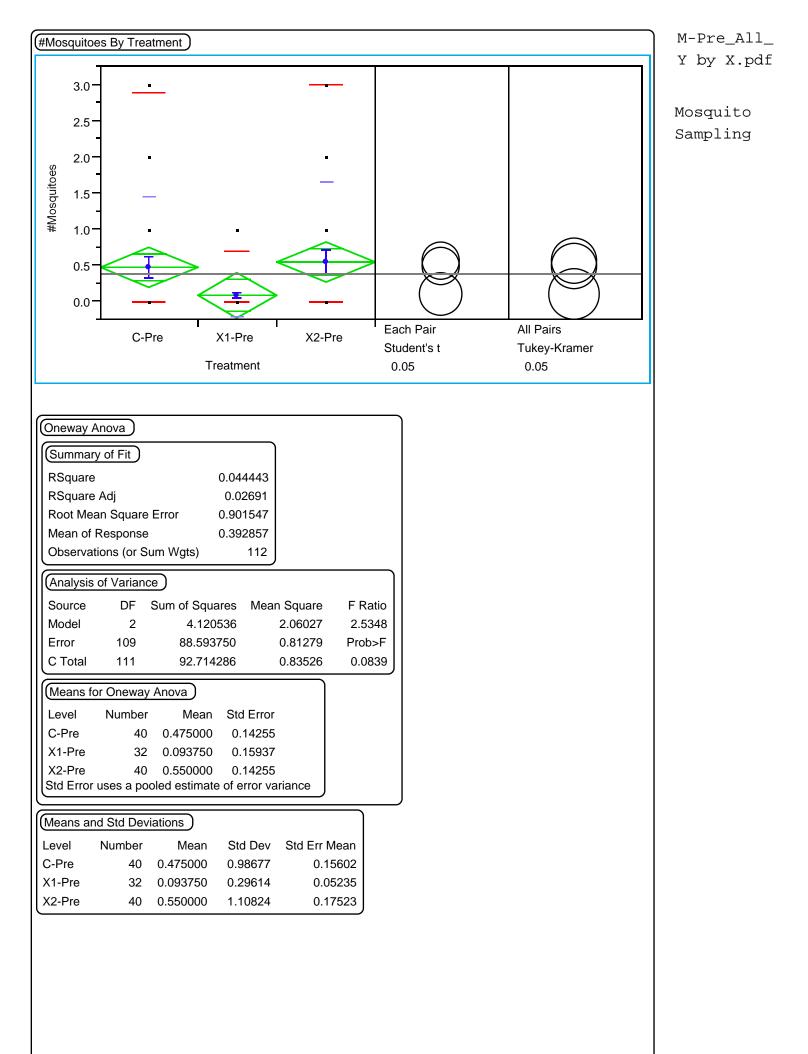

					`
(Means Compari	sons				
Dif=Mean[i]-Mea	an[j] X2-	2009 X	2-2006	X2-Pre	
X2-2009	0.0	0000 0	.60000	2.00000	
X2-2006	-0.6	0000 0	.00000	1.40000	
X2-Pre	-2.0	0000 -1	.40000	0.00000	
Alpha= 0.05					
Comparisons for	each pair us	sing Stude	nt's t		
t					
2.05181					
Abs(Dif)-LSD	X2-2009	X2-2006			
X2-2009	-0.79760	-0.19760			
X2-2006	-0.19760	-0.79760			
X2-Pre	1.20240	0.60240			
Positive values s Comparisons for	how pairs of	means the	at are signi	ficantly different.	
q*	all pairs usi	ig Tukey-r		D	
۹ 2.47942					
Abs(Dif)-LSD	X2-2009	X2-2006	6 X2-F	Pre	
X2-2009	-0.96382	-0.36382			
X2-2006	-0.36382	-0.96382	2 0.436	18	
X2-Pre	1.03618	0.43618	8 -0.963	82	
Positive values s	how pairs of	means that	at are signi	ficantly different.	
	•			, ,	
(Wilcoxon / Krusl	kal-Wallis Te	sts (Rank	Sums)		
Level (Count Sco	re Sum	Score Mea	n (Mean-Mean0)/Std0
X2-2006	10	182	18.200	•	1.221
X2-2008	10	218	21.800	-	2.881
X2-2009 X2-Pre	10	218 65	6.500	-	4.125
				-	
1-way Test, Cl	hi-Square Ap	oproximatio	on		
ChiSquare	DF Pr	ob>ChiSq			
18.1266	2	0.0001			

							,	
(Means Compa	arisons)							
Dif=Mean[i]-M	ean[j] X	(2-2009	X2-2006	3 >	X2-Pre			
X2-2009	(0.00000	2.80000) 3.	80000			
X2-2006	-2	2.80000	0.00000) 1.	00000			
X2-Pre	-3	3.80000	-1.00000	0.	00000			
Alpha= 0.05								
Comparisons for	or each pair	r using Stu	dent's t					
t								
2.05181								
Abs(Dif)-LSD	X2-200	9 X2-20	006	X2-Pre	•			
X2-2009	-3.0668	1 -0.260	681 0	.73319)			
X2-2006	-0.2668	1 -3.060	681 -2	.06681				
X2-Pre	0.7331	9 -2.060	581 -3	.06681				
Positive values					antly differ	ent.		
Comparisons fo	or all pairs u	using Luke	y-Kramei	HSD				
q* 2.47942								
Abs(Dif)-LSD	X2-200	9 X2-20	006	X2-Pre				
X2-2009	-3.7059	•		.09406				
X2-2009 X2-2006	-0.9059			.70594				
X2-Pre	0.0940			.70594				
Positive values						ont		
	snow pairs		inal ares	signinic	anuy unen)	
Wilcoxon / Kru	ıskal-Wallis	Tests (Ra	nk Sums)	D				
Level		core Sum	Score I		(Mean-Me	,		
X2-2006	10	164.5	-	4500		-).489	
X2-2009	10	190.5		0500		-	.900	
X2-Pre	10	110	11.	0000		-2	2.415	
1-way Test,	Chi-Square	Approxim	ation					
ChiSquare	DF	Prob>Chi8	Sq					
6.6298	2	0.030	63					
								,

(Means Compa	arisons				
Dif=Mean[i]-Me	ean[j] X2-	2009	X2-2006		
X2-2009	0.00	0000 (0.600000		
X2-2006		-0.6 (0.000000		
Alpha= 0.05	i				
Comparisons for	or each pair u	sing Stud	lent's t		
t					
2.10091					
Abs(Dif)-LSD	X2-2009	X2-20			
X2-2009	-1.00023	-0.400	-		
X2-2006	-0.40023	-1.000			
Positive values Comparisons for				antly different.	
q*	Ji ali palis usi	ng rukey			
2.10092					
Abs(Dif)-LSD	X2-2009	X2-20	06		
X2-2009	-1.00024	-0.400	24		
X2-2006	-0.40024	-1.000	24		
Positive values	show pairs o	f means t	hat are signific	antly different.	
	•				
(Wilcoxon / Kru	iskal-Wallis To	ests (Ran	k Sums)		
Level	Count Sco	re Sum	Score Mean	(Mean-Mean0)/	StdO
X2-2006	10	92	9.2000		.989
X2-2000 X2-2009	10	92 118	9.2000	-	.989).989
AZ-2009	10	110	11.0000	L L	.309
2-Sample Te	est, Normal Ap	oproximat	ion		
s	Z	Prob> Z			
118	0.98862	0.3228			
1-way Test,	Chi-Square A	pproxima	tion		
ChiSquare		ob>ChiS			
1.0571	1	0.303	-		
	I	0.000	0		

(Means Comparisons) Dif=Mean[i]-Mean[i] X2-2009 X2-2006 X2-2009 0.00000 2.80000 X2-2006 -2.80000 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1 2.10091 Abs(Dif)-LSD X2-2009 Abs(Dif)-LSD X2-2009 X2-2006 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. (Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2009 10 115.5 11.5500 -0.828 2-2009 10						`
X2-2009 0.00000 2.80000 X2-2006 -2.80000 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1 2.10091 Abs(Dif)-LSD X2-2009 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2009 -3.84595 -1.04595 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. Image: test is the image: test is tes	(Means Compa	arisons)				
X2-2006 -2.80000 0.00000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1 2.10091 Abs(Dif)-LSD Abs(Dif)-LSD X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 X2-2006 -1.04593 X2-2006 -1.04593 X2-2006 -1.04593 X2-2006 -1.04593 Vilcovon for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2009 -3.84595 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2009 -3.84595 Positive values show pairs of means that are significantly different. Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500	Dif=Mean[i]-M	ean[j]	X2-2009	X2-2006		
Alpha= $_{0.05}$ Comparisons for each pair using Student's t t 2.10091 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. (Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	X2-2009		0.00000	2.80000		
Comparisons for each pair using Student's t t 2.10091 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. (Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	X2-2006		-2.80000	0.00000		
t 2.10091 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	Alpha= 0.05	5				
2.10091 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	Comparisons for	or each p	air using Stud	dent's t		
Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq						
X2-2009 -3.84593 -1.04593 X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092Abs(Dif)-LSDX2-2009X2-2009 -3.84595 Y2-2006 -1.04595 X2-2006 -1.04595 X2-2006 -1.04595 Y2-2006 10 94.5 9.4500 -0.828X2-2009 10 115.5 11.5500 0.8282-Sample Test, Normal ApproximationSZSZProb> Z 115.5 0.82820 0.40761-way Test, Chi-Square ApproximationChiSquareDFProb>ChiSq						
X2-2006 -1.04593 -3.84593 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. \hline \hline \hline \hline \hline \hline \hline \hline						
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. $\boxed{Wilcoxon / Kruskal-Wallis Tests (Rank Sums)}$ Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq						
Comparisons for all pairs using Tukey-Kramer HSD q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. \hline \hline \hline \hline \hline \hline \hline \hline						
q* 2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different. Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq DF					antly different.	
2.10092 Abs(Dif)-LSD X2-2009 X2-2006 X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different.			s using Tuke			
X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different.	-					
X2-2009 -3.84595 -1.04595 X2-2006 -1.04595 -3.84595 Positive values show pairs of means that are significantly different.		X2-20	009 X2-20	006		
Positive values show pairs of means that are significantly different. (Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	. ,	-3.84	595 -1.045	595		
Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	X2-2006	-1.04	595 -3.845	595		
Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	Positive values	show pa	irs of means	that are signific	antly different.	
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob>[Z] 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq		•				,
X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation 0.828 0.828 0.828 2-Sample Test, Normal Approximation 0.4076 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation 0.4076 0.4076 0.4076 1-way Test, Chi-Square Approximation 0.4076 0.4076	VVIIcoxon / Kru	iskal-Wal	lis Tests (Rai	nk Sums)		
X2-2006 10 94.5 9.4500 -0.828 X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation 0.828 0.828 S Z Prob> Z 115.5 0.82820 115.5 0.82820 0.4076 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	ا وروا	Count	Score Sum	Score Mean	(Mean-Mean0)/	(Std0
X2-2009 10 115.5 11.5500 0.828 2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq						
2-Sample Test, Normal Approximation S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq			• · · •		-	
S Z Prob> Z 115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq		-			C	
115.5 0.82820 0.4076 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	2-Sample Te	est, Norm	al Approxima	tion		
1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq	s		Z Prob> Z			
ChiSquare DF Prob>ChiSq	115.5	0.8282	20 0.4076	5		
	1-way Test,	Chi-Squa	re Approxima	ation		
	ChiSquare	DF	Prob>ChiS	a		
	-			•		
		•		-		

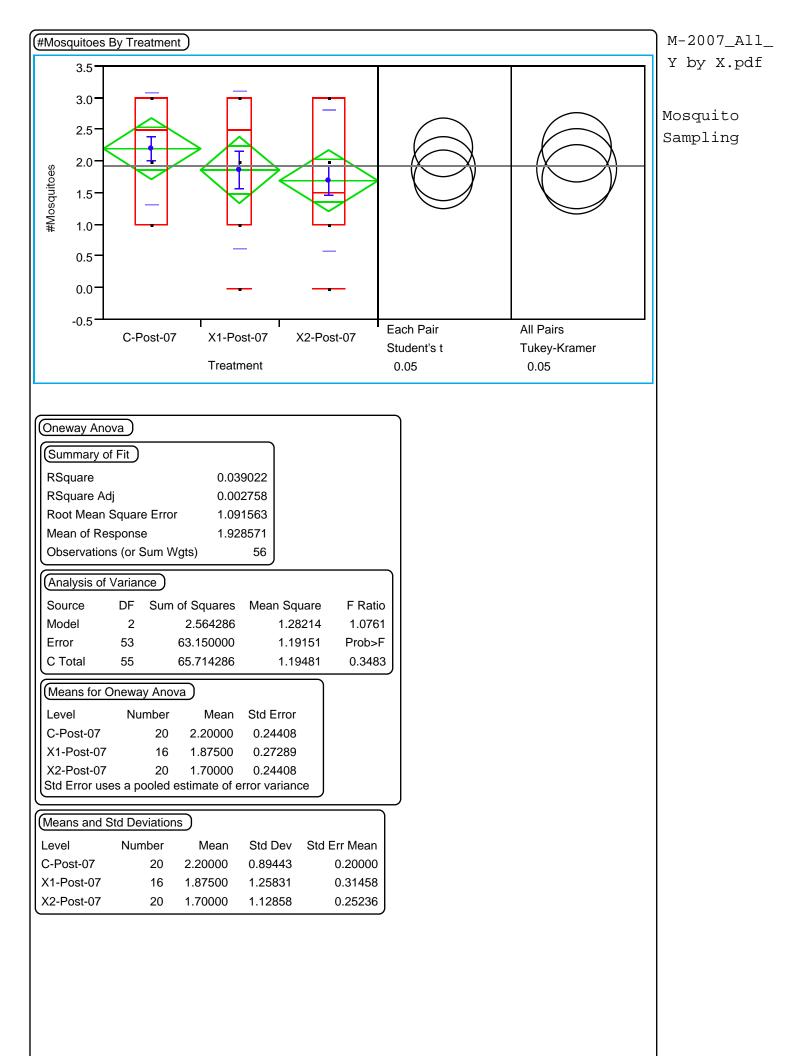
#Mosquitoes By Year)	M-Ctrl_Al
3.0 2.5 2.0 1.5 0.0 1.5 0.0 2.003 2.006 2.007 2.009 All Pairs Tukey-Kramer Student's t Student's t	Mosquito Sampling
Oneway Anova Summary of Fit RSquare 0.344589 RSquare Adj 0.328984 Root Mean Square Error 0.903916 Mean of Response 0.769231 Observations (or Sum Wgts) 130 Analysis of Variance Source DF Source DF Sum of Squares Mean Square F Ratio Model 3 54.12692 18.0423 22.0819 Error 126 102.95000 0.8171 Prob>F C Total 129 157.07692	
Means for Oneway Anova Level Number Mean Std Error 2003 40 0.47500 0.14292 2006 30 0.20000 0.16503 2007 20 2.20000 0.20212 2009 40 0.77500 0.14292 Std Error uses a pooled estimate of error variance Means and Std Deviations Level Number Mean Std Dev 2003 40 0.47500 0.98677 0.15602	
2006 30 0.20000 0.48423 0.08841 2007 20 2.20000 0.89443 0.20000 2009 40 0.77500 1.04973 0.16598	

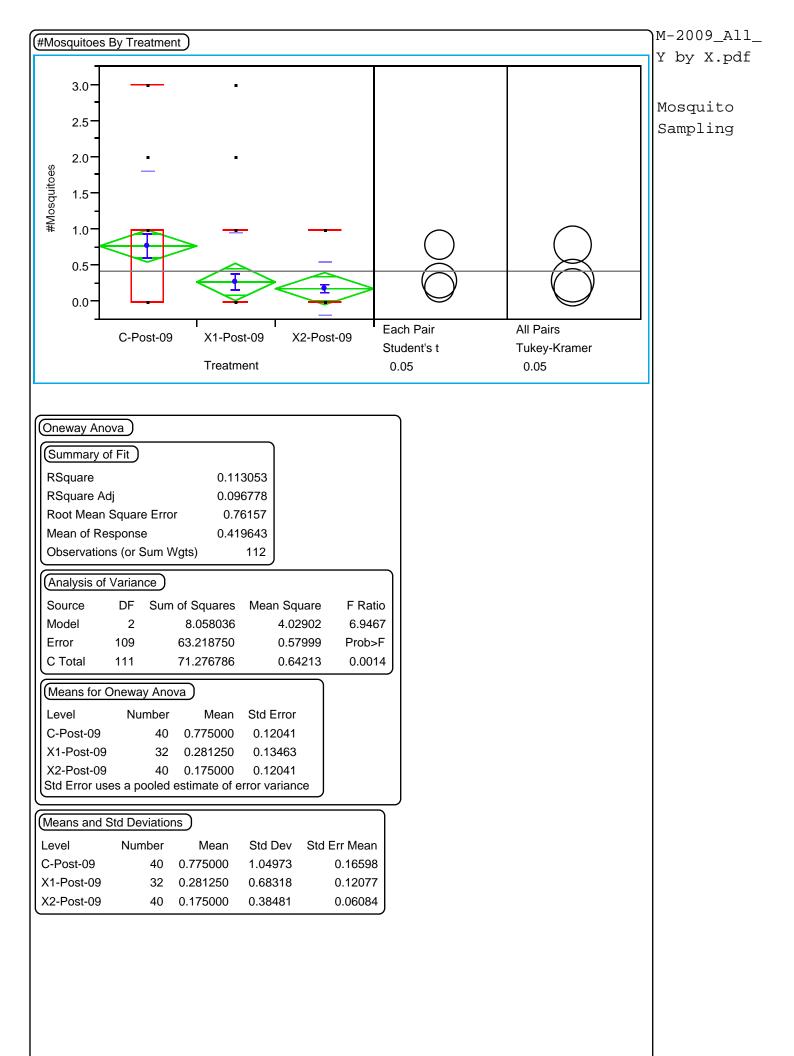

(Wilcoxon / Kruskal-Wallis Tests (Rank Sums)) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 2003 40 2191.5 54.788 -2.453 2006 30 1454 48.467 -3.204 2007 20 2176 108.800 6.344 2009 40 2693.5 67.338 0.418 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 46.3077 3 <.0001 .00000 1.72500 2.00000 2007 0.00000 1.42500 1.72500 2.00000 2007 0.00000 1.42500 1.72500 2.00000 2006 -2.00000 -0.57500 -0.27500 0.00000 2006 -2.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 Comparisons for all pairs using Tukey-Kramer HSD q* 2.60366 Abs(Dif)-LSD 2007 2009 2003 2006 2009 0.78047 -0.26266	Wilcovon / Kru	ekal_\\/allia T	ete (Pank S			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		snai-vvällis 16	SIS (Rain S			
2006 30 1454 48.467 -3.204 2007 20 2176 108.800 6.344 2009 40 2693.5 67.338 0.418 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 46.3077 3 <.0001	Level Co	unt Score S	Sum Score	Mean	(Mean-Me	ean0)/Std0
2007 20 2176 108.800 6.344 2009 40 2693.5 67.338 0.418 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 46.3077 3 <.0001	2003	40 219	91.5 క	54.788		-2.453
$\begin{array}{c cccccc} 2009 & 40 & 2693.5 & 67.338 & 0.418 \\ 1-way Test, Chi-Square Approximation \\ ChiSquare DF Prob>ChiSq \\ 46.3077 & 3 & <.0001 \\ \hline \end{array}$	2006	30 1	454 4	48.467		-3.204
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2007	20 2	176 10	08.800		6.344
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2009	40 269	93.5 6	67.338		0.418
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-way Test, 0	Chi-Square A	oproximation			
Means Comparisons Dif=Mean[i]-Mean[j] 2007 2009 2003 2006 2007 0.00000 1.42500 1.72500 2.00000 2009 -1.42500 0.00000 0.30000 0.57500 2003 -1.72500 -0.30000 0.00000 0.27500 2006 -2.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 Comparisons for all pairs using Tukey-Kramer HSD q* 2.60366 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.74424 0.78047 1.08047 1.32061 2009 0.78047 -0.2626 -0.0658 2003 1.08047 -0.22626 -0.29342 2006 1.32061 0.00658 -0.29342 -0.60767 Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's t t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511	ChiSquare	DF Pr	ob>ChiSq			
Dif=Mean[i]-Mean[j] 2007 2009 2003 2006 2007 0.00000 1.42500 1.72500 2.00000 2009 -1.42500 0.00000 0.30000 0.57500 2003 -1.72500 -0.30000 0.00000 0.27500 2006 -2.00000 -0.57500 -0.27500 0.00000 $Alpha=$ 0.05 2007 2009 2003 2006 2007 -0.74424 0.78047 1.08047 1.32061 2009 0.78047 -0.52626 -0.29342 -0.60767 2009 0.78047 -0.22626 -0.29342 -0.60767 $Positive values show pairs of means that are significantly different.Comparisons for each pair using student's tt1.9789920072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.40000-0.40000-0.15705$	46.3077	3	<.0001			
Dif=Mean[i]-Mean[j] 2007 2009 2003 2006 2007 0.00000 1.42500 1.72500 2.00000 2009 -1.42500 0.00000 0.30000 0.57500 2003 -1.72500 -0.30000 0.00000 0.27500 2006 -2.00000 -0.57500 -0.27500 0.00000 2006 -2.00000 -0.57500 -0.27500 0.00000 $Alpha=$ 0.05 2007 2009 2003 2006 2007 -0.74424 0.78047 1.08047 1.32061 2009 0.78047 -0.52626 -0.29342 -0.60767 $Positive values show pairs of means that are significantly different.Comparisons for each pair using student's ttt1.9789920072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.40000-0.40000-0.15705$						
2007 0.00000 1.42500 1.72500 2.00000 2009 -1.42500 0.00000 0.30000 0.57500 2003 -1.72500 -0.30000 0.00000 0.27500 2006 -2.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 0.05 0.00000 0.27500 Comparisons for all pairs using Tukey-Kramer HSD q^* q^* 2.60366 Abs(Dif)-LSD 2007 2009 2003 2009 0.78047 1.08047 1.32061 2009 0.78047 -0.52626 -0.29342 2006 1.32061 0.00658 -0.29342 2006 1.32061 0.00658 -0.29342 2006 1.32061 0.00658 -0.29342 2006 1.32061 0.00658 -0.29342 2006 1.32061 0.00658 -0.29342 2007 2007 2009 2003 2006 2007 2009 2003 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 2003 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.40000	(Means Compa	risons				
2009 -1.42500 0.00000 0.30000 0.57500 2003 -1.72500 -0.30000 0.00000 0.27500 2006 -2.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 0.057500 -0.27500 0.00000 Alpha= 0.05 0.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 0.00000 -0.57500 -0.27500 0.00000 Alpha= 0.05 0.057500 -0.27500 0.00000 q^* 2.60366 -0.2033 2006 2007 -0.74424 0.78047 1.08047 1.32061 2009 0.78047 -0.52626 -0.22626 0.00658 2003 1.08047 -0.22626 -0.29342 -0.60767 Positive values show pairs of means that are significantly different.Comparisons for each pair using Student's t t t 1.97899 $Abs(Dif)-LSD$ 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.40000 -0.40000 -0.15705	Dif=Mean[i]-Me	ean[j]	2007	2009	2003	2006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2007	0.0	0000 1.4	2500	1.72500	2.00000
2006 -2.0000 -0.57500 -0.27500 0.00000 Alpha= 0.05 Comparisons for all pairs using Tukey-Kramer HSD	2009	-1.4	2500 0.0	0000	0.30000	0.57500
Alpha= 0.05 Comparisons for all pairs using Tukey-Kramer HSDq*2.60366Abs(Dif)-LSD20072009200320062007-0.744240.780471.080471.3206120090.78047-0.52626-0.226260.0065820031.08047-0.22626-0.52626-0.2934220061.320610.00658-0.29342-0.60767Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's tt1.97899Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	2003	-1.7	2500 -0.3	0000	0.00000	0.27500
Output of the second stress of the second stres of the second stress of the second stress of	2006	-2.0	0000 -0.5	7500	-0.27500	0.00000
q*2.60366Abs(Dif)-LSD20072009200320062007-0.744240.780471.080471.3206120090.78047-0.52626-0.226260.0065820031.08047-0.22626-0.52626-0.2934220061.320610.00658-0.29342-0.60767Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's tt1.97899Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	Alpha= 0.05					
2.60366Abs(Dif)-LSD20072009200320062007-0.744240.780471.080471.3206120090.78047-0.52626-0.226260.0065820031.08047-0.22626-0.52626-0.2934220061.320610.00658-0.29342-0.60767Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's tt1.97899Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	Comparisons for	or all pairs usi	ng Tukey-Kra	amer HS	SD	
Abs(Dif)-LSD20072009200320062007-0.744240.780471.080471.3206120090.78047-0.52626-0.226260.0065820031.08047-0.22626-0.52626-0.2934220061.320610.00658-0.29342-0.60767Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's tt1.97899Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	q*					
2007 -0.74424 0.78047 1.08047 1.32061 2009 0.78047 -0.52626 -0.22626 0.00658 2003 1.08047 -0.22626 -0.52626 -0.29342 2006 1.32061 0.00658 -0.29342 -0.60767 Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's tt1.97899Abs(Dif)-LSD20072009200320062007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.10000 -0.40000 -0.15705						
2009 0.78047 -0.52626 -0.22626 0.00658 2003 1.08047 -0.22626 -0.52626 -0.29342 2006 1.32061 0.00658 -0.29342 -0.60767 Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.10000 -0.40000 -0.15705						
2003 1.08047 -0.22626 -0.52626 -0.29342 2006 1.32061 0.00658 -0.29342 -0.60767 Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's t t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.10000 -0.40000 -0.15705		-0.74424				
2006 1.32061 0.00658 -0.29342 -0.60767 Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.10000 -0.40000 -0.15705						
Positive values show pairs of means that are significantly different. Comparisons for each pair using Student's t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10000 0.14295 2003 1.23511 -0.10000 -0.40000 -0.15705						
Comparisons for each pair using Student's t t 1.97899 Abs(Dif)-LSD 2007 2009 2003 2006 2007 -0.56568 0.93511 1.23511 1.48361 2009 0.93511 -0.40000 -0.10200 0.14295 2003 1.23511 -0.10000 -0.15705						
1.97899Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	Positive values Comparisons fo	show pairs of or each pair u	f means that sing Student	are sign 's t	ificantly dif	ferent.
Abs(Dif)-LSD20072009200320062007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705	t					
2007-0.565680.935111.235111.4836120090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705						
20090.93511-0.40000-0.100000.1429520031.23511-0.10000-0.40000-0.15705		2007	2009			
2003 1.23511 -0.10000 -0.40000 -0.15705						
1 48361 0 14295 -0 15705 -0 46188 L						
	2006	1.48361	0.14295			
Positive values show pairs of means that are significantly different.	Positive values	show pairs of	f means that	are sign	ificantly dif	ferent.

(#Mosq	uitoes By Ye	ar							M-X1-All_
	3.5								Y by X.pdf
	3.0-		Ē						
									Mosquito
	2.5					_			Sampling
S	2.0		4	∖ .		\bigcap			
uitoe	1.5					\bigcirc			
los									
#	1.0	•							
	0.5		_	-				<u>}</u>	
	0.0		<u> </u>		~	\bigotimes		\mathcal{X}	
			\checkmark			\bigcirc		2	
-	-0.5	003 2	2006 200)7 2009	Ea	ach Pair	All Pairs		
	20	003 2		2009		udent's t	Tukey-Kram	er	
			Year		C	0.05	0.05		
Onew	vay Anova					ן			
	mary of Fit)					
RSqu			0.501867						
	uare Adj		0.486136						
	Mean Squar	e Error	0.656446						
	n of Respons		0.424242						
Obse	ervations (or S	Sum Wgts)	99	J					
Analy	ysis of Variar	nce)							
Sourc		Sum of Squ	uares Me	an Square F	Ratio				
Mode		41.24			9040				
Error	- 95	40.93	7500	0.4309 Pro	ob>F				
C Tot	tal 98	82.18	1818	0.8386 <.	0001				
Mear	ns for Onewa	iy Anova)							
Level	I Number	Mean	Std Error						
2003	3 32	0.09375	0.11604						
2006		0.00000	0.15060						
2007		1.87500	0.16411						
2009 Std Ei) 32 Frror uses a p	0.28125 ooled estima	0.11604 te of error \	variance					
)			
(Means	s and Std De	viations							
Level		Mean	Std Dev	Std Err Mean					
2003	32	0.09375	0.29614	0.05235					
2006 2007	19 16	0.00000 1.87500	0.00000 1.25831	0.00000 0.31458					
2007	32	0.28125	0.68318	0.31458					
<u> </u>									
									1

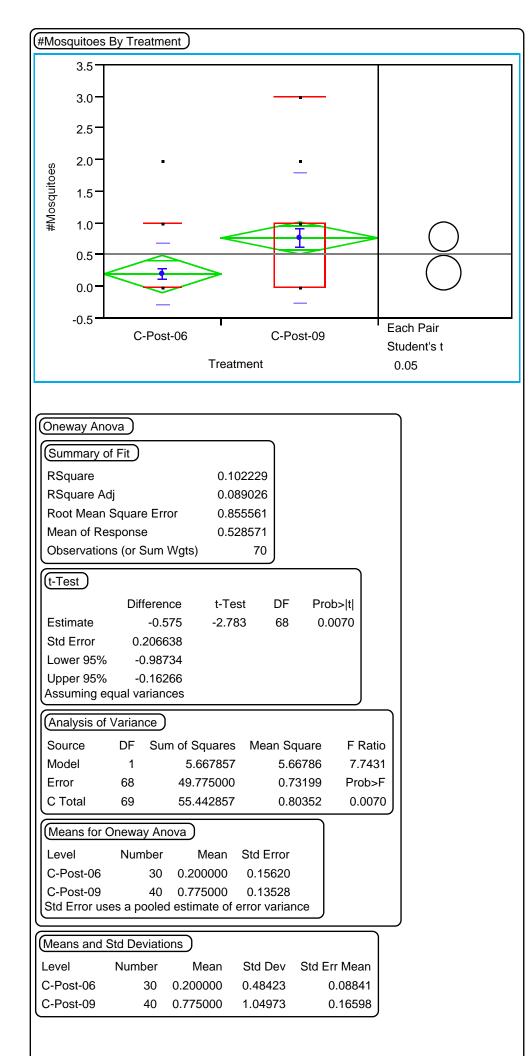
Wilcoxon / K	(ruskal-	Wallis Tes	ts (Rank S	Sums)			
	0	0 0			/ • •		0)/0/ 10
	Count	Score Su		e Mean	(Mea	in-Me	an0)/Std0
2003	32	138		13.1250			-2.261
2006	19	74		39.0000			-2.551
2007	16	1298		31.1563			6.518
2009	32	1530	.5 2	7.8281			-0.711
1-way Tes	t, Chi-S	quare App	roximatio	n			
ChiSquar	е	DF Prob	>ChiSq				
44.801	3	3	<.0001				
(Means Com	narison	<u> </u>					
				0000			0000
Dif=Mean[i]-	Mean[j]		07	2009		003	2006
2007		0.000		59375	1.78		1.87500
2009		-1.593		00000	0.18		0.28125
2003 2006		-1.781 -1.875		18750 28125	0.00 -0.09		0.09375 0.00000
		-1.070	-0.	20125	-0.09	375	0.00000
Alpha= 0.0			a Ctudon				
Comparisons t	ior eac	n pair usir	ig Studen	151			
1.98526							
Abs(Dif)-LS[כ	2007	2009	2	2003	2	2006
2007		.46076	1.19472		3222		3280
2009			-0.32580			-0.09	
2003		.38222	-0.13830			-0.28	
2006		.43280	-0.09619			-0.42	
Positive value							
Comparisons						,	
q*							
2.61510							
Abs(Dif)-LSI	C	2007	2009	2	2003	2	2006
2007	-0	.60693	1.06813	1.25	5563	1.29	9252
2009	1	.06813	-0.42917	-0.24	167	-0.21	1594
2003	1	.25563	-0.24167	-0.42	2917	-0.40)344
2006	1	.29252	-0.21594	-0.40)344	-0.55	5696
Positive value	es show	pairs of n	neans tha	t are sig	nifican	ly diff	erent.

	M-X2_All_
3.0- 2.5-	Y by X.pdf Mosquito Sampling
Oneway Anova Summary of Fit RSquare 0.31273 RSquare Adj 0.295691 Root Mean Square Error 0.815729 Mean of Response 0.528 Observations (or Sum Wgts) 125 Analysis of Variance Source DF Source DF Sum of Squares Mean Square Model 3 3 36.63700 12.2123 18.3530 Error 121 80.51500 0.6654	
C Total 124 117.15200 0.9448 <.0001	
2003 40 0.55000 1.10824 0.17523 2006 25 0.12000 0.33166 0.06633 2007 20 1.70000 1.12858 0.25236 2009 40 0.17500 0.38481 0.06084	


		llia Taata (Donk C:	(ma)			
(Wilcoxon / Ki	uskal-vva	IIIS TESIS (Rank St				
Level C	Count Se	core Sum	Score	Mean	(Mean	-Mea	an0)/Std0
2003	40	2417.5	60	.4375			-0.678
2006	25	1287	51	.4800			-2.228
2007	20	1992.5	99	.6250			6.189
2009	40	2178	54	.4500			-2.269
1-way Test	, Chi-Squa	are Approx	imation				
ChiSquare	e DF	Prob>C	hiSq				
40.0299) 3	<.	0001				
(Means Comp	parisons						
Dif=Mean[i]-N	/lean[j]	2007	2	2003	20	09	2006
2007		0.00000	1.15	5000	1.525	00	1.58000
2003		-1.15000		0000	0.375		0.43000
2009		-1.52500		7500	0.000	00	0.05500
2006		-1.58000	-0.43	3000	-0.055	00	0.00000
Alpha= 0.0	-						
Comparisons	for all pair	rs using Tu	ikey-Kra	imer HS	SD		
q*							
2.60510	_			-		-	
Abs(Dif)-LSD		007	2003		009		006
2007			68030	0.943).942	
2003	0.568		47518	-0.10		-0.11	
2009	0.943		10018	-0.47		-0.48	
2006	0.942		11178	-0.48		-0.60	
Positive value Comparisons					nificantly	/ diffe	erent.
t		an doing t	bradom	5.			
1.97978							
Abs(Dif)-LSD) 2	007	2003	2	009	2	006
2007	-0.51		70772	1.08		1.09	
2003	0.70		36112	0.01		0.01	
2009	1.08		01388	-0.36		-0.35	
2006	1.09		01826	-0.35		-0.45	
Positive value	s show pa	airs of mea	ins that a	are sigr	nificantly	/ diffe	erent.
<u> </u>							


Level Count Score Sum Score Mean (Mean-Mean0)/Std0 C-Pre 40 2344.5 58.6125 0.750 X1-Pre 32 1620.5 50.6406 -1.771 X2-Pre 40 2363 59.0750 0.915 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 3.1615 2 0.2058 0.915 Means Comparisons Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre X2-Pre 0.00000 0.075000 0.456250 0.2058 Means Comparisons Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre X2-Pre 0.00000 0.075000 0.456250 0.2058 Means for each pair using Student's t t t t X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.32455 -0.39955 -0.04254 X1-Pre Y2-Pre -	(Wilcoxon / Kruskal-Wallis Tests (Rank Sums))	
C-Pre 40 2344.5 58.6125 0.750 X1-Pre 32 1620.5 50.6406 -1.771 X2-Pre 40 2363 59.0750 0.915 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 3.1615 2 0.2058		
X1-Pre 32 1620.5 50.6406 -1.771 X2-Pre 40 2363 59.0750 0.915 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 3.1615 2 0.2058 (Means Comparisons) Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre X2-Pre 0.000000 0.075000 0.456250 C-Pre -0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.32455 -0.32455 -0.04254 2.4621 C-Pre -0.32455 -0.39955 -0.04254 2.4671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre Abs(Dif)-LSD X2-Pre C-Pre X1-Pre -0.47902 -0.40402<	Level Count Score Sum Score Mean (Mean-Mea	n0)/Std0
X2-Pre 40 2363 59.0750 0.915 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 3.1615 2 0.2058 Means Comparisons Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre X2-Pre 0.000000 0.075000 0.456250 C-Pre 2.2-Pre 0.000000 0.381250 Minute -0.45625 -0.38125 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X1-Pre 2.39955 -0.04254 2.462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 2.04254 2.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.47902 -0.40402 -0.05183 -0.73683	C-Pre 40 2344.5 58.6125	0.750
1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 3.1615 2 0.2058 $\frac{(Means Comparisons)}{Dif=Mean[i]-Mean[j]} X2-Pre C-Pre X1-Pre X2-Pre 0.00000 0.075000 0.456250 C-Pre 0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^*2.37618Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183C-Pre -0.40402 -0.47902 -0.12683X1-Pre -0.05183 -0.12683 -0.53556$	X1-Pre 32 1620.5 50.6406	-1.771
ChiSquare DF Prob>ChiSq 3.1615 2 0.2058 Means Comparisons Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre 2.Pre 0.000000 0.075000 0.456250 C-Pre X1-Pre X2-Pre 0.0075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre C-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre X1-Pre X2-Pre -0.32455 -0.39955 -0.04254 X1-Pre X2-Pre -0.32462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre X1-Pre	X2-Pre 40 2363 59.0750	0.915
3.16152 0.2058 Means ComparisonsDif=Mean[i]-Mean[j]X2-PreC-PreX1-PreX2-Pre 0.00000 0.075000 0.456250 C-Pre -0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 0.032462 -0.4254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDX2-PreC-PreX2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	1-way Test, Chi-Square Approximation	
	ChiSquare DF Prob>ChiSq	
Dif=Mean[i]-Mean[j]X2-PreC-PreX1-PreX2-Pre 0.000000 0.075000 0.456250 C-Pre -0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.39955 -0.32455 0.032462 C-Pre 0.032455 -0.04254 -0.44671 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.05183 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	3.1615 2 0.2058	
Dif=Mean[i]-Mean[j]X2-PreC-PreX1-PreX2-Pre 0.000000 0.075000 0.456250 C-Pre -0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.39955 -0.32455 0.032462 C-Pre 0.032455 -0.04254 -0.44671 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.47902 -0.12683 $X1$ -PreX2-Pre -0.40402 -0.12683 $X1$ -Pre		
X2-Pre 0.000000 0.075000 0.456250 C-Pre -0.075 0.000000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.32455 0.032462 C-Pre -0.32455 -0.032462 C-Pre -0.32455 -0.04254 X1-Pre 0.032462 -0.04254 X1-Pre 0.032462 -0.044671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDX2-PreC-PreX2-Pre -0.47902 -0.40402 -0.05183 -0.12683 X1-Pre -0.05183 -0.12683	(Means Comparisons)	
C-Pre -0.075 0.00000 0.381250 X1-Pre -0.45625 -0.38125 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	Dif=Mean[i]-Mean[j] X2-Pre C-Pre X1-Pre	
X1-Pre-0.45625-0.381250.000000Alpha= 0.05 Comparisons for each pair using Student's tt1.98198Abs(Dif)-LSDX2-PreC-PreX1-Pre-0.39955-0.324550.032462-0.04254C-Pre-0.32455-0.04254X1-Pre0.032462-0.04254X1-Pre0.032462-0.04254X1-Pre0.032462-0.04254X1-Pre0.032462-0.04254X1-Pre0.032462-0.04254X1-Pre0.032462-0.04254X2-Pre0.04254-0.44671Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDX2-PreC-PreX1-Pre-0.47902-0.05183C-Pre-0.40402-0.05183C-Pre-0.05183-0.12683X1-Pre-0.05183-0.53556	X2-Pre 0.000000 0.075000 0.456250	
Alpha= 0.05 Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	C-Pre -0.075 0.000000 0.381250	
Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.05183 -0.12683 X1-Pre	X1-Pre -0.45625 -0.38125 0.000000	
t 1.98198 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	Alpha= 0.05	
1.98198Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q*q*2.37618Abs(Dif)-LSDX2-PreC-PreX2-Pre -0.47902 -0.40402 C-Pre -0.5183 C-Pre -0.27902 -0.12683 X1-Pre -0.05183 -0.53556	Comparisons for each pair using Student's t	
AbsX2-PreC-PreX1-PreX2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 q^* AbsX2-PreC-PreX1-PreX2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.47902 -0.12683 -0.53556	t	
X2-Pre -0.39955 -0.32455 0.032462 C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q*		
C-Pre -0.32455 -0.39955 -0.04254 X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 q^* Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.12683 X1-PreX1-Pre -0.05183 -0.12683 -0.53556		
X1-Pre 0.032462 -0.04254 -0.44671 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.40402 -0.05183 C-Pre -0.47902 -0.12683 X1-Pre -0.05183 -0.53556		
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556		
Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD X2-Pre C-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.12683 -0.53556	X1-Pre 0.032462 -0.04254 -0.44671	
2.37618 Abs(Dif)-LSD X2-Pre C-Pre X1-Pre X2-Pre -0.47902 -0.05183 C-Pre -0.40402 -0.12683 X1-Pre -0.05183 -0.12683		ent.
Abs(Dif)-LSDX2-PreC-PreX1-PreX2-Pre-0.47902-0.40402-0.05183C-Pre-0.40402-0.47902-0.12683X1-Pre-0.05183-0.12683-0.53556	q*	
X2-Pre -0.47902 -0.40402 -0.05183 C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	2.37618	
C-Pre -0.40402 -0.47902 -0.12683 X1-Pre -0.05183 -0.12683 -0.53556	Abs(Dif)-LSD X2-Pre C-Pre X1-Pre	
X1-Pre -0.05183 -0.12683 -0.53556	X2-Pre -0.47902 -0.40402 -0.05183	
	C-Pre -0.40402 -0.47902 -0.12683	
Positive values show pairs of means that are significantly different.	X1-Pre -0.05183 -0.12683 -0.53556	
	Positive values show pairs of means that are significantly different	ent.

#Mosquitoes By Treatment)
2.0 1.5 901 1.0 0.5 0.0 C-Post-06 X1-Post-06 X2-Post-06 Each Pair All Pairs Student's t Tukey-Kramer Treatment 0.05 0.05	M-2006_All_ Y by X.pdf
Oneway Anova]
Summary of FitRSquare0.046985RSquare Adj0.02014Root Mean Square Error0.364634Mean of Response0.121622Observations (or Sum Wgts)74	
Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 2 0.4654054 0.232703 1.7502 Error 71 9.4400000 0.132958 Prob>F C Total 73 9.9054054 0.135690 0.1812	
Means for Oneway Anova Level Number Mean Std Error C-Post-06 30 0.200000 0.06657 X1-Post-06 19 0.000000 0.08365 X2-Post-06 25 0.120000 0.07293 Std Error uses a pooled estimate of error variance Std Error uses a pooled estimate of error variance	
Means and Std Deviations Level Number Mean Std Dev Std Err Mean C-Post-06 30 0.200000 0.484234 0.08841 X1-Post-06 19 0.000000 0.00000 0.00000 X2-Post-06 25 0.120000 0.331662 0.06633	


Wilcoxon / Kruskal-Wallis Tests (Rank Sums)	
Level Count Score Sum Score Mean (Mean-Mean0))/Std0
C-Post-06 30 1191.5 39.7167	1.350
X1-Post-06 19 636.5 33.5000 -	1.736
X2-Post-06 25 947 37.8800	0.191
1-way Test, Chi-Square Approximation	
ChiSquare DF Prob>ChiSq	
3.3957 2 0.1831	
(Means Comparisons)	
Dif=Mean[i]-Mean[j] C-Post-06 X2-Post-06 X1-Post-06	
C-Post-06 0.000000 0.080000 0.200000	
X2-Post-06 -0.08 0.000000 0.120000	
X1-Post-06 -0.2 -0.12 0.000000	
Alpha= 0.05	
Comparisons for each pair using Student's t	
t	
1.99395 Abs(Dif)-LSD C-Post-06 X2-Post-06 X1-Post-06	
Abs(Dif)-LSD C-Post-06 X2-Post-06 X1-Post-06 C-Post-06 -0.18773 -0.11689 -0.01317	
X2-Post-06 -0.11689 -0.20564 -0.10128	
X1-Post-06 -0.01317 -0.10128 -0.23589	
Positive values show pairs of means that are significantly different.	
Comparisons for all pairs using Tukey-Kramer HSD	
q*	
2.39384	
Abs(Dif)-LSD C-Post-06 X2-Post-06 X1-Post-06	
C-Post-06 -0.22538 -0.15638 -0.05593	
X2-Post-06 -0.15638 -0.24689 -0.14566	
X1-Post-06 -0.05593 -0.14566 -0.2832	
Positive values show pairs of means that are significantly different.	

Level Count Score Sum Score Mean (Mean-Mean0)/Std0 C-Post-07 20 640 32.0000 1.267 X1-Post-07 16 450 28.1250 -0.106 X2-Post-07 20 506 25.3000 -1.158 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 1.9330 2 0.3804	Wilcoxon / Krusl	kal-Wallis Te	ests (Rank S	ums)		
C-Post-07 20 640 32.0000 1.267 X1-Post-07 16 450 28.1250 -0.106 X2-Post-07 20 506 25.3000 -1.158 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq -1.158 1.9330 2 0.3804 - - - - Means Comparisons Dif=Mean[i]-Mean[j] C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 C-Spas5 C-Diga35 X1-Post-07 C-Post-07 C-Post-07			,			
X1-Post-07 16 450 28.1250 -0.106 X2-Post-07 20 506 25.3000 -1.158 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 1.9330 2 0.3804 Mean[i]-Mean[j] C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 0.000000 0.325000 0.500000 X1-Post-07 -0.325 0.000000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 X1-Post-07 -0.5 -0.175 0.000000 X1-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.5 -0.175 0.000000 X1-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.69235 -0.19235 X1-Post-07 Comparisons for each pair using Student's t t t t t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.55935 X2-Post-07 -0.55935 X2-Post-07 -0.19235 -0.55935 X2-Post-07	Level	Count S	Score Sum	Score Mean	(Mean-Mean	0)/Std0
X2-Post-07 20 506 25.3000 -1.158 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 1.9330 2 0.3804 (Means Comparisons) Dif=Mean[i]-Mean[j] C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 0.000000 0.325000 0.500000 X1-Post-07 -0.325 0.000000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.5 -0.175 0.000000 X2-Post-07 -0.69235 -0.19235 -0.19235 Comparisons for each pair using Student's t t t t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.40935 -0.77407 -0.59355 X2-Post-07 -0.19235 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tuk	C-Post-07	20	640	32.0000		1.267
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1-Post-07	16	450	28.1250		-0.106
$\begin{array}{c cccc} ChiSquare & DF & Prob>ChiSq \\ 1.9330 & 2 & 0.3804 \end{array}$	X2-Post-07	20	506	25.3000		-1.158
1.93302 0.3804 Means ComparisonsDif=Mean[i]-Mean[j]C-Post-07X1-Post-07X2-Post-07C-Post-07 0.000000 0.325000 0.500000 X1-Post-07 -0.325 0.000000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt 2.00574 Abs(Dif)-LSDC-Post-07X1-Post-07C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq* 2.41127 Abs(Dif)-LSDC-Post-07Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.33233 X1-Post-07 -0.33233 -0.70782 X2-Post-07 -0.33233 -0.70782	1-way Test, Cl	hi-Square A	pproximatior	ı		
Means ComparisonsDif=Mean[i]-Mean[j]C-Post-07X1-Post-07X2-Post-07C-Post-070.0000000.3250000.500000X1-Post-07 -0.325 0.0000000.175000X2-Post-07 -0.5 -0.175 0.000000Alpha= 0.05 Comparisons for each pair using Student's ttt2.00574Abs(Dif)-LSDC-Post-07X1-Post-07X1-Post-07 -0.69235 -0.40935 X1-Post-07 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07 -0.33233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.33233 -0.70782 X2-Post-07 -0.33233	ChiSquare	DF Pr	ob>ChiSq			
Dif=Mean[i]-Mean[j]C-Post-07X1-Post-07X2-Post-07C-Post-07 0.00000 0.325000 0.500000 X1-Post-07 -0.325 0.000000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt2.00574Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.69235 -0.40935 C-Post-07 -0.69235 -0.19235 X1-Post-07 -0.55935 -0.69235 X2-Post-07 -0.19235 -0.55935 X2-Post-07 -0.19235 -0.69235 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.83233 -0.55782 -0.33233 -0.70782 X2-Post-07 -0.33233	1.9330	2	0.3804			
Dif=Mean[i]-Mean[j]C-Post-07X1-Post-07X2-Post-07C-Post-07 0.000000 0.325000 0.500000 X1-Post-07 -0.325 0.000000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt2.00574Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.69235 -0.40935 C-Post-07 -0.69235 -0.19235 X1-Post-07 -0.55935 -0.69235 X2-Post-07 -0.19235 -0.69235 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.83233 -0.55782 -0.33233 -0.70782 X2-Post-07 -0.33233						
C-Post-07 0.00000 0.325000 0.500000 X1-Post-07 -0.325 0.00000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233	(Means Compari	sons)				
X1-Post-07 -0.325 0.00000 0.175000 X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's tt2.00574Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.69235 -0.40935 C-Post-07 -0.69235 -0.19235 X1-Post-07 -0.19235 -0.55935 X2-Post-07 -0.19235 -0.55935 V2-Post-07 -0.19235 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSDq*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.83233 -0.55782 -0.33233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.83233 X2-Post-07 -0.53782 -0.83233	Dif=Mean[i]-Mea	an[j] C-Po	st-07 X1-F	ost-07 X2-P	ost-07	
X2-Post-07 -0.5 -0.175 0.000000 Alpha= 0.05 Comparisons for each pair using Student's tt2.00574Abs(Dif)-LSDC-Post-07X1-Post-07 $X2$ -Post-07C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.33233 -0.70782 X2-Post-07 -0.33233	C-Post-07	0.00	0000 0.3	325000 0.5	500000	
Alpha= $_{0.05}$ Comparisons for each pair using Student's t t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233	X1-Post-07	-(0.325 0.0	000000 0.1	75000	
Comparisons for each pair using Student's t t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233	X2-Post-07		-0.5	-0.175 0.0	00000	
t 2.00574 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233	Alpha= 0.05					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Comparisons for	each pair u	sing Student	's t		
Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07C-Post-07 -0.69235 -0.40935 -0.19235 X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q*q*2.41127Abs(Dif)-LSDC-Post-07X1-Post-07X2-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
X1-Post-07 -0.40935 -0.77407 -0.55935 X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q*						
X2-Post-07 -0.19235 -0.55935 -0.69235 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.70782 X2-Post-07 -0.33233 -0.70782						
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.33233 X1-Post-07 -0.70782 X2-Post-07 -0.33233						
Comparisons for all pairs using Tukey-Kramer HSD q* 2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233						
2.41127 Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233	Comparisons for				tly different.	
Abs(Dif)-LSD C-Post-07 X1-Post-07 X2-Post-07 C-Post-07 -0.83233 -0.55782 -0.33233 X1-Post-07 -0.55782 -0.93057 -0.70782 X2-Post-07 -0.33233 -0.70782 -0.83233						
C-Post-07-0.83233-0.55782-0.33233X1-Post-07-0.55782-0.93057-0.70782X2-Post-07-0.33233-0.70782-0.83233						
X1-Post-07-0.55782-0.93057-0.70782X2-Post-07-0.33233-0.70782-0.83233		C-Post-07	X1-Post-07	X2-Post-07	•	
X2-Post-07 -0.33233 -0.70782 -0.83233						
Positive values show pairs of means that are significantly different.						
	Positive values s	how pairs o	f means that	are significan	tly different.	

LevelCountScore SumScore Mean(Mean-Mean0)/Std0C-Post-0940268367.07503.272X1-Post-0932164851.5000-1.310X2-Post-0940199749.9250-2.0331-way Test, Chi-Square ApproximationChiSquareDFProb>ChiSq10.796120.00450.600000Mean[i]-Mean[i]C-Post-09X1-Post-09X2-Post-09C-Post-090.0000000.4937500.600000X1-Post-09-0.493750.0000000.106250X2-Post-09-0.6-0.106250.000000X1-Post-09-0.6-0.106250.000000Alpha=0.05Comparisons for each pair using Student's tttt1.357600.262484X1-Post-090.135760-0.37735-0.25174X2-Post-090.262484-0.25174-0.33752Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDC-Post-09Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09c-Post-09-0.404640.0645590.195355X1-Post-090.064559-0.45241-0.32294X2-Post-090.195355-0.32294-0.40464	(Wilcoxon / Kruskal-Wallis Tests (Rank Sums))
$ \begin{array}{c} C-Post-09 & 40 & 2683 & 67.0750 & 3.272 \\ X1-Post-09 & 32 & 1648 & 51.5000 & -1.310 \\ X2-Post-09 & 40 & 1997 & 49.9250 & -2.033 \\ 1-way Test, Chi-Square Approximation \\ ChiSquare DF Prob>ChiSq \\ 10.7961 & 2 & 0.0045 \\ \end{array} $	
X1-Post-09 32 1648 51.5000 -1.310 X2-Post-09 40 1997 49.9250 -2.033 1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 10.7961 2 0.0045	Level Count Score Sum Score Mean (Mean-Mean0)/Std0
X2-Post-0940199749.9250-2.0331-way Test, Chi-Square ApproximationChiSquareDFProb>ChiSq10.796120.0045(Means ComparisonsDif=Mean[i]-Mean[j]C-Post-09X1-Post-09X2-Post-090.0000000.4937500.600000X1-Post-09-0.493750.0000000.106250X2-Post-09-0.6-0.106250.000000X1-Post-09-0.6-0.106250.000000Alpha=0.05Comparisons for each pair using Student's t ttt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09-0.337520.1357600.262484X1-Post-090.262484-0.25174-0.33752Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q*q*2.37618Abs(Dif)-LSDC-Post-09X1-Post-09Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09C-Post-09-0.404640.0645590.195355X1-Post-090.0645590.195355X2-Post-090.195355-0.32294X2-Post-090.195355-0.32294	C-Post-09 40 2683 67.0750 3.272
1-way Test, Chi-Square Approximation ChiSquare DF Prob>ChiSq 10.7961 2 0.0045 (Means Comparisons Dif=Mean[i]-Mean[j] C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 Q2-Post-09 C-Post-09 0.135760 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 X2-Post-09 C-Post-09 0.195355	X1-Post-09 32 1648 51.5000 -1.310
ChiSquareDFProb>ChiSq10.796120.0045(Means ComparisonsDif=Mean[i]-Mean[j]C-Post-09X1-Post-09X2-Post-09C-Post-090.0000000.4937500.600000X1-Post-09-0.493750.0000000.106250X2-Post-09-0.6-0.106250.000000Alpha=0.050.00000Alpha=Comparisons for each pair using Student's tttt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09-0.337520.1357600.262484-0.25174X2-Post-090.262484V1-Post-090.262484V2-Post-090.40464V2-Post-090.40464V2-Post-090.40464V2-Post-090.40464V2-Post-090.40464V2-Post-090	X2-Post-09 40 1997 49.9250 -2.033
10.79612 0.0045 Means ComparisonsDif=Mean[i]-Mean[j]C-Post-09X1-Post-09X2-Post-09C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's tttt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09 -0.40464 0.064559 0.195355 -0.32294 -0.40464	1-way Test, Chi-Square Approximation
Means Comparisons Dif=Mean[i]-Mean[j] C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 0.135760 0.262484 0.25174 X2-Post-09 C-Post-09 0.262484 -0.25174 X1-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.32294 X2-Post-09 0.064559 -0.32294 X2-Post-09 X2-Post-09 X2-Post-09	ChiSquare DF Prob>ChiSq
Dif=Mean[i]-Mean[j]C-Post-09X1-Post-09X2-Post-09C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09 -0.33752 0.135760 C-Post-09 0.262484 X1-Post-09 0.262484 X1-Post-09 0.25174 V2-Post-09 0.262484 C-Post-09 0.262484 C-Post-09 0.262484 V2-Post-09 0.262484 C-Post-09 0.262484 V2-Post-09 0.262484 X2-Post-09 0.262484 V2-Post-09 0.262484 V2-P	10.7961 2 0.0045
Dif=Mean[i]-Mean[j]C-Post-09X1-Post-09X2-Post-09C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's ttt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09 -0.33752 0.135760 C-Post-09 0.262484 X1-Post-09 0.262484 X1-Post-09 0.25174 V2-Post-09 0.262484 Comparisons for all pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDC-Post-09X1-Post-09 0.195355 X1-Post-09 0.195355 X1-Post-09 0.195355 V2-Post-09 0.195355 V2-Post-09 0.195355 V2-Post-09 0.195355 V2-Post-09 0.40464	
C-Post-09 0.000000 0.493750 0.600000 X1-Post-09 -0.49375 0.000000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 0.135760 -0.37735 -0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.195355 -0.32294 -0.40464	(Means Comparisons)
X1-Post-09 -0.49375 0.00000 0.106250 X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's tt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09 -0.33752 0.135760 0.262484X1-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDC-Post-09X1-Post-09 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.40464 0.04645	Dif=Mean[i]-Mean[j] C-Post-09 X1-Post-09 X2-Post-09
X2-Post-09 -0.6 -0.10625 0.000000 Alpha= 0.05 Comparisons for each pair using Student's tt1.98198Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 0.262484 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different.Comparisons for all pairs using Tukey-Kramer HSDq*2.37618Abs(Dif)-LSDC-Post-09X1-Post-09 $X2$ -Post-09C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.195355 -0.32294 -0.40464	C-Post-09 0.000000 0.493750 0.600000
Alpha= $_{0.05}$ Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	X1-Post-09 -0.49375 0.000000 0.106250
Comparisons for each pair using Student's t t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	X2-Post-09 -0.6 -0.10625 0.000000
t 1.98198 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	Alpha= 0.05
1.98198 Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* 2.37618 -0.327618 -0.40464 Abs(Dif)-LSDC-Post-09X1-Post-09X1-Post-09 -0.40464 -0.32294 X2-Post-09 -0.40464 -0.32294 X2-Post-09 -0.40464 -0.32294	Comparisons for each pair using Student's t
Abs(Dif)-LSDC-Post-09X1-Post-09X2-Post-09C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q^* q^* 2.37618 Abs(Dif)-LSDC-Post-09X1-Post-09C-Post-09 -0.40464 0.064559 X1-Post-09 0.064559 -0.32294 X2-Post-09 0.195355 -0.32294	
C-Post-09 -0.33752 0.135760 0.262484 X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	
X1-Post-09 0.135760 -0.37735 -0.25174 X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.195355 -0.32294 -0.40464	
X2-Post-09 0.262484 -0.25174 -0.33752 Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	
Positive values show pairs of means that are significantly different. Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 0.195355 X1-Post-09 0.064559 0.195355 -0.32294 X2-Post-09 0.195355	
Comparisons for all pairs using Tukey-Kramer HSD q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 0.195355 X1-Post-09 0.064559 0.195355 X1-Post-09 0.195355 -0.32294 X2-Post-09 0.195355 -0.32294	
q* 2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 0.195355 X1-Post-09 0.064559 X1-Post-09 0.064559 X2-Post-09 0.064559 X2-Post-09 0.064559 X2-Post-09 0.195355 X2-Post-09 0.195355	Comparisons for all pairs using Tukey-Kramer HSD
2.37618 Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09 C-Post-09 -0.40464 0.064559 0.195355 X1-Post-09 0.064559 -0.45241 -0.32294 X2-Post-09 0.195355 -0.32294 -0.40464	
C-Post-09-0.404640.0645590.195355X1-Post-090.064559-0.45241-0.32294X2-Post-090.195355-0.32294-0.40464	
X1-Post-090.064559-0.45241-0.32294X2-Post-090.195355-0.32294-0.40464	Abs(Dif)-LSD C-Post-09 X1-Post-09 X2-Post-09
X2-Post-09 0.195355 -0.32294 -0.40464	C-Post-09 -0.40464 0.064559 0.195355
	X1-Post-09 0.064559 -0.45241 -0.32294
Positive values show pairs of means that are significantly different	X2-Post-09 0.195355 -0.32294 -0.40464
() source values show pairs of means that are significantly different.	Positive values show pairs of means that are significantly different.

Mosquito Sampling

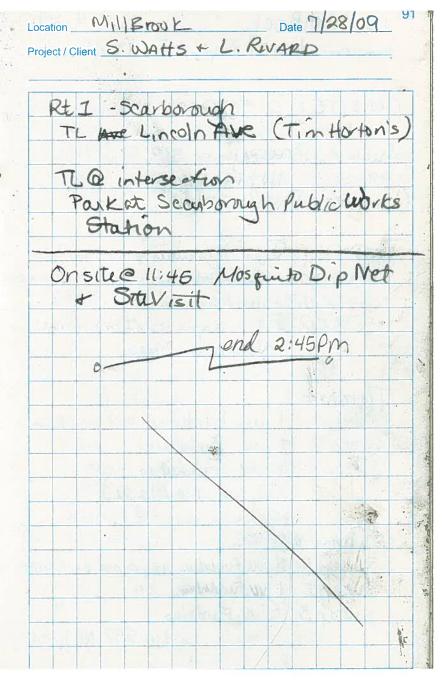
Wilcoxon / Kru	skal-Wallis	Tests (Rank	(Sums)	
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0
C-Post-06	30	881.5	29.3833	-2.617
C-Post-09	40	1603.5	40.0875	2.617
2-Sample Te	st, Normal	Approximati	on	
S	Z	Prob> Z		
881.5	-2.61664	0.0089		
1-way Test, (Chi-Square	Approximati	ion	
ChiSquare	DF	Prob>ChiSq		
6.8843	1	0.0087		
Means Compa	risons			
Dif=Mean[i]-Me	ean[j] C-	Post-09 C-	Post-06	
C-Post-09	0.	000000 0.	.575000	
C-Post-06		-0.575 0.	.000000	
Alpha= 0.05				
Comparisons for	or each pai	r using Stude	ent's t	
t				
1.99547				
Abs(Dif)-LSD	C-Post-C	9 C-Post-0	6	
C-Post-09	-0.3817	5 0.16266	60	
C-Post-06	0.16266	0 -0.4408	1	
Positive values	show pairs	s of means th	nat are significa	ntly different.

CUNA		Dulla							
	squitoes	ву теа	ar						
	3.5								
	3.0-			Ē	_	_			
	2.5-			持				\bigcap	
sec	2.0-			\mathbf{F}	<u>•</u>			\bigcirc	
#Mosquitoes	1.5								
Ŭ #	1.0-					\triangleright		$-\bigcirc$	
	0.5		\rightarrow			T		\sim	
	0.0		-			_]		\bigcirc	
	-0.5	20	006	2007	2009			Pairs ey-Kramer	
				Year			0.0	-	
One	way An	ova							
Su	mmary	of Fit)				
	quare			0.430543					
11	quare A	dj		0.417452					
11	ot Mean		Error	0.864199					
11	an of Re			0.9					
			Sum Wgts)	90					
An	alysis of	f Varian	ce)				
	urce	DF	Sum of Squ	Jares Me	an Square	F Ra	atio		
Mo		2	-	2500	24.5625	32.88			
Err		87		7500	0.7468	Prob			
11	otal	89	114.1		1.2820	<.00			
			y Anova)						
Lev	/el N	umber	Mean	Std Error					
200	06	30	0.20000	0.15778					
200)7	20	2.20000	0.19324					
200		40	0.77500	0.13664	.				
Std	Error us	ses a po	ooled estima	te of error \	variance				
Mea	ans and	Std Dev	viations						
Leve		mber	Mean	Std Dev	Std Err Me				
2006		30	0.20000	0.48423	0.088				
2007		20	2.20000	0.89443	0.200				
2009	9	40	0.77500	1.04973	0.165	598			

M-Ctrl_AllPost_ Y by X.pdf

Mosquito Sampling

Wilcoxon /	Kruskal-	Wallis Tests	s (Rank S	ums)			
Level	Count	Score Sur	n Score	Mean	(Mean-Mea	n0)/Std0	
2006	30	901.5		0.0500	(-4.320	
2007	20	146 ⁻	1 73	3.0500		5.825	
2009	40	1732.	5 43	3.3125		-0.770	
1-way Te	est, Chi-S	quare Appr	oximation	1			
ChiSqua	are	DF Proba	>ChiSq				
39.23	888	2	<.0001				
(Means Co		_					
Dif=Mean[i	i]-Mean[j]	200)7	2009	2006		
2007		0.0000	00 1.4	2500	2.00000		
2009		-1.4250	0.0 0.0	0000	0.57500		
2006		-2.000	00 -0.5	7500	0.00000		
Alpha= (0.05						
Comparisor	ns for all	pairs using	Tukey-Kra	amer H	SD		
q*	r						
2.38450							
Abs(Dif)-L	SD	2007	2009	2	006		
2007	-C	.65164	0.86066	1.40	513		
2009	0	.86066 -	0.46078	0.07	730		
2006	1	.40513	0.07730	-0.53	206		
Positive values show pairs of means that are significantly different.							


APPENDIX F

Field Notes

[PAGE INTENTIONALLY LEFT BLANK]

Location Mill Brosk Date 7/18/07 89 Project / Client Mosquito Dip Net Location MII Brock Date 7/ 18/07 Project / Client Mosquito Dy Net 5 dys equally spreed in the pool itself Approach from E doing path / res nerensorhood Will sie white PVC types Also all see gilf course & winds At how type can ralk arress channed but tide turns quickly Nop netting - presente ubsome Burens XI X2 + C Dipnet Comy Fig 2 Det meeton network Directions in Books on map Croque direction +N ... Cl

Project	n	Nº 2 L	(an iden	Date		
Tiojeet						- 11
-	·	1				27 21/20/212
1 tender			Second 6			
			510			
1.3				16		
	1		an trade	131 13	N5	-lu-
14	WER R		1. 1. 1. 1. 1.	1.00		-
1. A.	1		1	5	-	
-		Unitz -				-
1 0 1 V A						
	1.2.2.2. 6	1.2 11	N	<u>en 19.000</u>	V = 194.5	
1. A.		-		1.01.54		
	1	Stan warden		Angeler		
1		67 20	Sec. Sugar			
18.18						
	1.00					
	10				1	
(mine	•		*			
10		-	-		8	
B. S. App.		and the second				100
-		-		/-		-
1	le le			1		
	and the	41	-			
1. ² 1.	1. S. 1.					
	Calific Contraction			21		

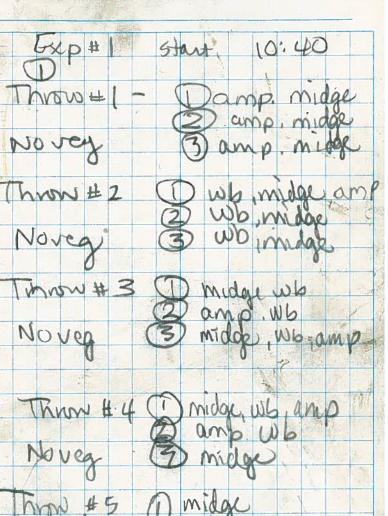
Location MILBOOK Date 8-4-09 Location Date _ Project / Client LINDA RWARD + Tyle, Ouulet Project / Client Throws you and you want ON SITE: 2 50 PM sweep/-backswimmens SUNNY Breezy ~ 769 Sweep 2 backswimmens, amphipids, midges Control Pool SWEEP 3 1200, Fundulus, backswimmin's NOSAV NO ALGAR 1 hrow # 1 Div. Fundulus sp. Throw #5 Sweep 1 - Killi fist, amphipod bactswimmers Sweep1 - backswimmens, millow Sweepz backswimmens Sweep 2 backswimmens Sweep 3 midge, backsin minus SWEEPB - backswimmens NO Algae NOSAL NO SAV Or Algre Birds - Am Crow, white egist Throw #2 BI Duck, Sweep1 - Isur Fundulus backsnimmens Sweep'2 2jur. Fundalus in Throw #6 Sweep 3. LIVV. Fundidus Sweep | - Backswimmens . Sweepz - Backswimmens NOSAV, NO Algal Sweep 3 - Jun, Fundulus Ale the second [how #3 W. MUDDY !! NOVEG Surep 1 HJUV. Fundalus, amphipod, backswimmers: Sucep Z. I jyu, Findulus, Surep 3 5 july Fundalus. NO SAV NO ALGAL il states

Date Location Project / Client Project / Client _ All Marine Provide the second Exp Post #2 start - 0505PM hov4 Throw Sweep1 - Z / W Killifish fow backswimme Sweep 1 - backswimmers SWPEPZ - 2 # KILL Fish fewbackswimmens Swaep 2 - " SW92037. " SWREP3-2 Kill, tish NO VEG NO FISH near shore, no veg 1 how 5 THROW 2 Sweep/ - backswimmens few Sweep) - 3 Killi Fish, backswimmens Sweepz-5Killifish Sweepz-4Killifish Sweep Z - backswimmens ton SWEED 3 - D near shore, noveq total fish - 12 banded Kulltish deeperwater near certin of poor no veg Exp#Zenel 0555 heave sites 6:15 PM 0----Throw 3 KULTISH CONTRACTOR Sweep 1 - backsminnens 2 sillinsides Swep2 - 2 Killitish Sweep 3 - V & Fish Notes: Exp Pool#2 much deeper soft bottom, deep, no. kg wel a much high abundance of tish allected, and of much large size State 24 C Lin Folispecies Aminated, by binled killitish w/few silversides and mumm, chug ecter: mallard fro

Location Mill Brook Date 8/1/09 Project / Client L. Rivard onside 7:15Am Sunny, No Breeze 817/09 Low Tide Photos Species White egnet, GRBL Heron, (group) Ducks (group) Canada goose (flock) Kaptor heard Vo calizing (Red TAIL?) Butterfly - Brown w lorange wing tips at Exp Pool #@ 1:50 Photo Station 5+6 Exp. Pool # 2 photo complete @ 8:15 Bagin Photos & Control ford @ 8:25 Photo Station 1+2 Complete @ 8:50 Black egret. > jw Great Blue Heron? White egrets W/yellow legs (small) - Snowy Egret Exp Pool#1 Photos Station 3+4 Begin: 8:55 End 9:25 Leaveste 9:50

Location Mill Brook Date DIOLO9 99 Project / Client L. R. Wark Mosquito Dip Net Sompling Onstead 8 AM Clear, warsh, NOBreeze lemps increasing + humid. (became breezy & about 9 Am) Many + locks on bords (egets, herons, ducts, sand pipers, grese) & beeved in large pools boated on west side of brook channel. At exp port #2 @ 8:30 AM ouser pooe # 5 dry. Sampled nearly pool w/water Finish @ - exp Pore # 2 @ 9:50 Control Pool 10:00 AM - 11.20 Raccon tracks Exp Pool # 1 11:25 - 12:04 Treave site @ 12:25

100 Location MII Brook Date 5/25/09 Project / Client FSM/USFWS 0830 Date 9-11-09 101 Location Mill Srock Project / Client FSM / USFW.S 0830 SITE ASSOSMENT COVERTYPE MOSQUITO DIP NET SURVEY BIRDS Scarborough DPW personnel stopped the to see if I wap w/ DIFtw? TINY SANDPIPERS-SPOTED HECU GREG BLDU SM PUCKS They have had some issues w/ AMCR ANDO DIFEW SURVeyors looking for BAKI SNEG bats and installing stakes GOHE DCCO in the pipeline Row GLIB LEYE 1 clarifed our role and GRYE this location is OK. Note: at 1230 tide is still very Ducks (BL) low; seems to be incoming Sandpiper (flock) but creeping in. HEGU NO KINGFISHER (BELTED) CAGO AMCK CLEG COEG Tringa species myellowlegs or sandpiper - GIM 8/25/195


102 Location Mill Brook Date 9/22/09 Project / Client L. Rivard Mosquito Dip Net Sampling Onsde 0805 Sunny w/ light wapy doud layer. Slight breeze. NO's and cumbing. Pools very full HynTide 9.6 Ft 0201 AM LowTide 0. 1FtC 0755AM Begin sampling @ Exp Pod #2 @ 0830 Complete e 0920 Begin sampling & Control Pool Complete co 1025 GRBH AMOR Racoontracks Begin exp Pore #2 Q Deen hacks Unid Sandpiper Complete @ 1100 unid sparrow teas Arrive Cuchicle (108 10

Location MUL SROOK. Date 9-30-07103 Project / Client SWatts J. ban Act Vegetation Monitoring 2Xa#1 Trypsecto 3, 5, 1, 2, 2,4 Gre Points 1, 2, 3 now bre /pool 320, 344°, 84°, 167° 342°, 355 58°, 136°, 204° 328°, 348°, 66°, 134°, 202° CONT[12, 100, 158, 200, 284 Control 5,43,21

Location Scinborough SaltMarsh Date 10-8-09 Project / Client MILBOOK Linda Rivard, T. Gaudet * J. Swerter Observer) Sunny + mild ~ 58 1 No Clouds Light Breeze Nection Sampling Onstre @0850 Exp. Post#2 (5) Begin Sampling @ 0907 Contre Pool Throw#1 - midge, amphipads Noveg 2 water boatmen, midge, amp. Wb= water boatmen Thinw #2 sweep 1-amp, midge, ubb Flamentons 2-amp. Wb algae 3 DFundulus y-o-y Novey amp. midge Throw #3 Q wb, anp. milge Nove filamentous 3 wb, amp midge Damp. midge Throw# 4 Nove Bamp. Mille

Location Date Project / Client Throw #5 1- ang midge 2- D banded killifish 3- amp. midge 1- midge, amp./ Throw #6 2- mage amp. 1 - midge Throw # 7 Noveg Z- midge anip Z- midge anip Throw #8 D midge, amp. No veg 3 midge, amp. midge, ump. Control end 09:50 AM A MARY M

106 Location Location Date Project / Client Project / Client Start 10:00 GXP# snails Wb (many SXD# 4Jb NO VTA worm, wo 1 movo # tilamentais argue No rea NG hrow #2 Wh to la nortas (2 100 calable 3 Novea novea Wb, mappy amp. 3 now D banded Killfish to amentons throw # Z Wb alad Nover nearintet no seg Thowy Wb Noveg how 5 4 banded Kill 7 bandel linitis Marinlet #2 Killitash End Exp#2 10:30

middle oump.

101

Date

[PAGE INTENTIONALLY LEFT BLANK]

APPENDIX G

Species List

[PAGE INTENTIONALLY LEFT BLANK]

		Visual	Pre-	Year 2 post-	Year 5 post-
Common Name	Scientific Name	Categories	Restoration	Restoration	Restoration
Birds		*			
American avocet	Recurvirostra Americana	Wading bird		Х	
	Corvus	wading bird			
American crow	brachyrhynchos	Passerine	Х		Х
American goldfinch	Carduelis tristis	Passerine	X		Х
American robin	Turdus migratorius	Passerine	X		
Belted kingfisher					Х
Black capped chickadee	Parus atricapillus	Passerine	X		
Blue jay	Cyanocitta cristata	Passerine	X		Х
Black duck	Anas rubripes	Dabbling duck		Х	Х
Canada goose	Branta canadensis	Water bird	X	Х	Х
Cattle egret	Bubulcus ibis	Wading bird	X		
Common yellowthroat	Geothlypis trichas	Passerine	X		
Double-crested cormorant	Phalacrocorax auritus	Water bird	Х	Х	X
Eastern kingbird	Tyrannus tyrannus	Passerine	X		
Eastern phoebe	Sayornis phoebe	Passerine	X		
Snowy egret	Egretta thula	Wading bird		Х	Х
Glossy ibis	Plegadis falcinellus	Wading bird		Х	Х
Gray catbird	Dumetella carolinensis	Passerine	X	Х	
Great blue heron	Ardea heroides	Wading bird	X	Х	X
Great egret	Ardea alba	Wading bird	X	X	X
Greater yellowlegs	Tringa melanoleuca	Wading bird	X		Х
Hairy woodpecker	Picoides villosus	Non-passerine land bird	X		
Herring gull	Larus argentatus	Seabird	X	Х	X
House wren	Troglodytes aedon	Passerine	Х		
Least sandpiper	Calidris minutilla	Wading bird	X		
Lesser yellowlegs		Wading bird			Х
Little blue heron	Egretta caerulea	Wading bird		Х	Х
Mallard	Anas platyrhynchos	Dabbling duck		Х	Х
Marsh wren	Cistothorus palustris	Passerine	X	Х	

Species Observed in the vicinity of the Mill Brook Project Area.

Common Name	Scientific Name	Visual Categories	Pre- Restoration	Year 2 post- Restoration	Year 5 post- Restoration
Northern harrier	Circus cyaneus	Bird of prey	X		X
Northern flicker	Colaptes auratus	Non-passerine land bird	X		
Plover species	Charadrius species	Wading bird		X	
Red-tailed hawk	Buteo jamaicensis	Bird of prey	Х	Х	Х
Saltmarsh sharp- tailed sparrow	Ammodramus caudacutus	Passerine	X	Х	X
Sandpiper species	Calidris species	Wading bird	Х	Х	X
Tree swallow	Tachycineta bicolor	Passerine	X		
Tufted titmouse	Baeolophus bicolor	Passerine	X		
Willet	Catoptrophorus semipalmatus	Wading bird	X		
Mammals					
Deer tracks		Large mammal			X
Eastern chipmunk	Tamias striatus	Small mammal	X		X
Beaver					Х
Raccoon track/scat	Procyon lotor	Large mammal	X		X
Red squirrel	Tamiasciurus hudsonicus	Small mammal	X		

¹Note: Data collected on bird and wildlife observed using the project area are anecdotal observations collected during field sampling activities onsite, and are intended to provide additional information, and do not represent qualitative data collection. Additionally, these data are collected by individuals with a range of expertise in the identification of birds and wildlife, and therefore represent only a partial list of the species that may actually be using the project area.